
Python
PARA TODOS

Raúl González Duque

Python
PARA TODOS

Raúl González Duque

Python para todos
por Raúl González Duque

Este libro se distribuye bajo una licencia Creative Commons Reconocimien-
to 2.5 España. Usted es libre de:

copiar, distribuir y comunicar públicamente la obra

hacer obras derivadas

Bajo las condiciones siguientes:

Reconocimiento. Debe reconocer y dar crédito al autor original
(Raúl González Duque)

La imágen de portada es una fotografía de una pitón verde de la especie
Morelia viridis cuyo autor es Ian Chien. La fotografía está licenciada bajo
Creative Commons Attribution ShareAlike 2.0

Contenido

Introducción� 6
¿Qué es Python?� 6
¿Por qué Python?� 7
Instalación de Python� 8
Herramientas básicas� 9

Mi primer programa en Python� 11
Tipos básicos� 14

Números� 15
Cadenas� 20
Booleanos� 20

Colecciones� 22
Listas� 22
Tuplas� 24
Diccionarios� 25

Control de flujo� 27
Sentencias condicionales� 27
Bucles� 30

Funciones� 34
Orientación a Objetos� 40

Clases y objetos� 40
Herencia� 43
Herencia múltiple� 44
Polimorfismo� 45
Encapsulación� 46
Clases de “nuevo-estilo”� 48
Métodos especiales� 48

Revisitando Objetos� 51
Diccionarios� 51
Cadenas� 52
Listas� 52

Programación funcional� 54
Funciones de orden superior� 54
Iteraciones de orden superior sobre listas� 56
Funciones lambda� 57
Comprensión de listas� 58
Generadores� 59
Decoradores� 60

Excepciones� 62
Módulos y Paquetes� 69

Módulos� 69
Paquetes� 72

Entrada/Salida Y Ficheros� 73
Entrada estándar� 73
Parámetros de línea de comando� 74
Salida estándar� 74
Archivos� 78

Expresiones Regulares� 81
Patrones� 81
Usando el módulo re� 85

Sockets� 88
Interactuar con webs� 92
Threads� 98

¿Qué son los procesos y los threads?� 98
El GIL� 99
Threads en Python� 100
Sincronización� 102
Datos globales independientes� 107
Compartir información� 107

6

Introducción

¿Qué es Python?
Python es un lenguaje de programación creado por Guido van Rossum
a principios de los años 90 cuyo nombre está inspirado en el grupo de
cómicos ingleses “Monty Python”. Es un lenguaje similar a Perl, pero
con una sintaxis muy limpia y que favorece un código legible.

Se trata de un lenguaje interpretado o de script, con tipado dinámico,
fuertemente tipado, multiplataforma y orientado a objetos.

Lenguaje interpretado o de script
Un lenguaje interpretado o de script es aquel que se ejecuta utilizando
un programa intermedio llamado intérprete, en lugar de compilar el
código a lenguaje máquina que pueda comprender y ejecutar directa-
mente una computadora (lenguajes compilados).

La ventaja de los lenguajes compilados es que su ejecución es más
rápida. Sin embargo los lenguajes interpretados son más flexibles y más
portables.

Python tiene, no obstante, muchas de las características de los lengua-
jes compilados, por lo que se podría decir que es semi interpretado. En
Python, como en Java y muchos otros lenguajes, el código fuente se
traduce a un pseudo código máquina intermedio llamado bytecode la
primera vez que se ejecuta, generando archivos .pyc o .pyo (bytecode
optimizado), que son los que se ejecutarán en sucesivas ocasiones.

Tipado dinámico
La característica de tipado dinámico se refiere a que no es necesario
declarar el tipo de dato que va a contener una determinada variable,

Introducción

7

sino que su tipo se determinará en tiempo de ejecución según el tipo
del valor al que se asigne, y el tipo de esta variable puede cambiar si se
le asigna un valor de otro tipo.

Fuertemente tipado
No se permite tratar a una variable como si fuera de un tipo distinto
al que tiene, es necesario convertir de forma explícita dicha variable
al nuevo tipo previamente. Por ejemplo, si tenemos una variable que
contiene un texto (variable de tipo cadena o string) no podremos tra-
tarla como un número (sumar la cadena “9” y el número 8). En otros
lenguajes el tipo de la variable cambiaría para adaptarse al comporta-
miento esperado, aunque esto es más propenso a errores.

Multiplataforma
El intérprete de Python está disponible en multitud de plataformas
(UNIX, Solaris, Linux, DOS, Windows, OS/2, Mac OS, etc.) por lo
que si no utilizamos librerías específicas de cada plataforma nuestro
programa podrá correr en todos estos sistemas sin grandes cambios.

Orientado a objetos
La orientación a objetos es un paradigma de programación en el que
los conceptos del mundo real relevantes para nuestro problema se tras-
ladan a clases y objetos en nuestro programa. La ejecución del progra-
ma consiste en una serie de interacciones entre los objetos.

Python también permite la programación imperativa, programación
funcional y programación orientada a aspectos.

¿Por qué Python?
Python es un lenguaje que todo el mundo debería conocer. Su sintaxis
simple, clara y sencilla; el tipado dinámico, el gestor de memoria, la
gran cantidad de librerías disponibles y la potencia del lenguaje, entre
otros, hacen que desarrollar una aplicación en Python sea sencillo, muy
rápido y, lo que es más importante, divertido.

La sintaxis de Python es tan sencilla y cercana al lenguaje natural que

Python para todos

8

los programas elaborados en Python parecen pseudocódigo. Por este
motivo se trata además de uno de los mejores lenguajes para comenzar
a programar.

Python no es adecuado sin embargo para la programación de bajo
nivel o para aplicaciones en las que el rendimiento sea crítico.

Algunos casos de éxito en el uso de Python son Google, Yahoo, la
NASA, Industrias Ligh & Magic, y todas las distribuciones Linux, en
las que Python cada vez representa un tanto por ciento mayor de los
programas disponibles.

Instalación de Python
Existen varias implementaciones distintas de Python: CPython,
Jython, IronPython, PyPy, etc.

CPython es la más utilizada, la más rápida y la más madura. Cuando la
gente habla de Python normalmente se refiere a esta implementación.
En este caso tanto el intérprete como los módulos están escritos en C.

Jython es la implementación en Java de Python, mientras que
IronPython es su contrapartida en C# (.NET). Su interés estriva en
que utilizando estas implementaciones se pueden utilizar todas las
librerías disponibles para los programadores de Java y .NET.

PyPy, por último, como habréis adivinado por el nombre, se trata de
una implementación en Python de Python.

CPython está instalado por defecto en la mayor parte de las distribu-
ciones Linux y en las últimas versiones de Mac OS. Para comprobar si
está instalado abre una terminal y escribe python. Si está instalado se
iniciará la consola interactiva de Python y obtendremos parecido a lo
siguiente:

Python 2.5.1 (r251:54863, May 2 2007, 16:56:35)
[GCC 4.1.2 (Ubuntu 4.1.2-0ubuntu4)] on linux2
Type “help”, “copyright”, “credits” or “license” for more
information.
>>>

Introducción

9

La primera línea nos indica la versión de Python que tenemos ins-
talada. Al final podemos ver el prompt (>>>) que nos indica que el
intérprete está esperando código del usuario. Podemos salir escribiendo
exit(), o pulsando Control + D.

Si no te muestra algo parecido no te preocupes, instalar Python es muy
sencillo. Puedes descargar la versión correspondiente a tu sistema ope-
rativo desde la web de Python, en http://www.python.org/download/.
Existen instaladores para Windows y Mac OS. Si utilizas Linux es
muy probable que puedas instalarlo usando la herramienta de gestión
de paquetes de tu distribución, aunque también podemos descargar la
aplicación compilada desde la web de Python.

Herramientas básicas
Existen dos formas de ejecutar código Python. Podemos escribir líneas
de código en el intérprete y obtener una respuesta del intérprete para
cada línea (sesión interactiva) o bien podemos escribir el código de un
programa en un archivo de texto y ejecutarlo.

A la hora de realizar una sesión interactiva os aconsejo instalar y uti-
lizar iPython, en lugar de la consola interactiva de Python. Se puede
encontrar en http://ipython.scipy.org/. iPython cuenta con características
añadidas muy interesantes, como el autocompletado o el operador ?.

La función de autocompletado se lanza pulsando el tabulador. Si
escribimos fi y pulsamos Tab nos mostrará una lista de los objetos
que comienzan con fi (file, filter y finally). Si escribimos file. y
pulsamos Tab nos mostrará una lista de los métodos y propiedades del
objeto file.

El operador ? nos muestra información sobre los objetos. Se utiliza
añadiendo el símbolo de interrogación al final del nombre del objeto
del cual queremos más información. Por ejemplo:

In [3]: str?
Type: type
Base Class:
String Form:

Python para todos

10

Namespace: Python builtin
Docstring:
str(object) -> string

Return a nice string representation of the object.
If the argument is a string, the return value is the same
object.

En el campo de IDEs y editores de código gratuitos PyDEV (http://
pydev.sourceforge.net/) se alza como cabeza de serie. PyDEV es un plu-
gin para Eclipse que permite utilizar este IDE multiplataforma para
programar en Python. Cuenta con autocompletado de código (con
información sobre cada elemento), resaltado de sintaxis, un depurador
gráfico, resaltado de errores, explorador de clases, formateo del código,
refactorización, etc. Sin duda es la opción más completa, sobre todo si
instalamos las extensiones comerciales, aunque necesita de una canti-
dad importante de memoria y no es del todo estable.

Otras opciones gratuitas a considerar son SPE o Stani’s Python Editor
(http://sourceforge.net/projects/spe/), Eric (http://die-offenbachs.de/eric/),
BOA Constructor (http://boa-constructor.sourceforge.net/) o incluso
emacs o vim.

Si no te importa desembolsar algo de dinero, Komodo (http://www.
activestate.com/komodo_ide/) y Wing IDE (http://www.wingware.com/)
son también muy buenas opciones, con montones de características
interesantes, como PyDEV, pero mucho más estables y robustos. Ade-
más, si desarrollas software libre no comercial puedes contactar con
Wing Ware y obtener, con un poco de suerte, una licencia gratuita para
Wing IDE Professional :)

11

Mi primer
programa en

Python

Como comentábamos en el capítulo anterior existen dos formas de
ejecutar código Python, bien en una sesión interactiva (línea a línea)
con el intérprete, o bien de la forma habitual, escribiendo el código en
un archivo de código fuente y ejecutándolo.

El primer programa que vamos a escribir en Python es el clásico Hola
Mundo, y en este lenguaje es tan simple como:

print “Hola Mundo”

Vamos a probarlo primero en el intérprete. Ejecuta python o ipython
según tus preferencias, escribe la línea anterior y pulsa Enter. El intér-
prete responderá mostrando en la consola el texto Hola Mundo.

Vamos ahora a crear un archivo de texto con el código anterior, de
forma que pudiéramos distribuir nuestro pequeño gran programa entre
nuestros amigos. Abre tu editor de texto preferido o bien el IDE que
hayas elegido y copia la línea anterior. Guárdalo como hola.py, por
ejemplo.

Ejecutar este programa es tan sencillo como indicarle el nombre del
archivo a ejecutar al intérprete de Python

python hola.py

Python para todos

12

pero vamos a ver cómo simplificarlo aún más.

Si utilizas Windows los archivos .py ya estarán asociados al intérprete
de Python, por lo que basta hacer doble clic sobre el archivo para eje-
cutar el programa. Sin embargo como este programa no hace más que
imprimir un texto en la consola, la ejecución es demasiado rápida para
poder verlo si quiera. Para remediarlo, vamos a añadir una nueva línea
que espere la entrada de datos por parte del usuario.

print “Hola Mundo”
raw_input()

De esta forma se mostrará una consola con el texto Hola Mundo hasta
que pulsemos Enter.

Si utilizas Linux (u otro Unix) para conseguir este comportamiento, es
decir, para que el sistema operativo abra el archivo .py con el intérprete
adecuado, es necesario añadir una nueva línea al principio del archivo:

#!/usr/bin/python
print “Hola Mundo”
raw_input()

A esta línea se le conoce en el mundo Unix como shebang, hashbang
o sharpbang. El par de caracteres #! indica al sistema operativo que
dicho script se debe ejecutar utilizando el intérprete especificado a
continuación. De esto se desprende, evidentemente, que si esta no es la
ruta en la que está instalado nuestro intérprete de Python, es necesario
cambiarla.

Otra opción es utilizar el programa env (de environment, entorno)
para preguntar al sistema por la ruta al intérprete de Python, de forma
que nuestros usuarios no tengan ningún problema si se diera el caso de
que el programa no estuviera instalado en dicha ruta:

#!/usr/bin/env python
print “Hola Mundo”
raw_input()

Por supuesto además de añadir el shebang, tendremos que dar permi-
sos de ejecución al programa.

Mi primer programa en Python

13

chmod +x hola.py

Y listo, si hacemos doble clic el programa se ejecutará, mostrando una
consola con el texto Hola Mundo, como en el caso de Windows.

También podríamos correr el programa desde la consola como si trata-
ra de un ejecutable cualquiera:

./hola.py

14

Tipos básicos

En Python los tipos básicos se dividen en:

Números, como pueden ser •	 3 (entero), 15.57 (de coma flotante) o
7 + 5j (complejos)
Cadenas de texto, como •	 “Hola Mundo”

Valores booleanos: •	 True (cierto) y False (falso).

Vamos a crear un par de variables a modo de ejemplo. Una de tipo
cadena y una de tipo entero:

esto es una cadena
c = “Hola Mundo”

y esto es un entero
e = 23

podemos comprobarlo con la función type
type(c)
type(e)

Como veis en Python, a diferencia de muchos otros lenguajes, no se
declara el tipo de la variable al crearla. En Java, por ejemplo, escribiría-
mos:

String c = “Hola Mundo”;
int e = 23;

Este pequeño ejemplo también nos ha servido para presentar los
comentarios inline en Python: cadenas de texto que comienzan con el
carácter # y que Python ignora totalmente. Hay más tipos de comenta-
rios, de los que hablaremos más adelante.

Tipos básicos

15

Números
Como decíamos, en Python se pueden representar números enteros,
reales y complejos.

Enteros
Los números enteros son aquellos números positivos o negativos que
no tienen decimales (además del cero). En Python se pueden repre-
sentar mediante el tipo int (de integer, entero) o el tipo long (largo).
La única diferencia es que el tipo long permite almacenar números
más grandes. Es aconsejable no utilizar el tipo long a menos que sea
necesario, para no malgastar memoria.

El tipo int de Python se implementa a bajo nivel mediante un tipo
long de C. Y dado que Python utiliza C por debajo, como C, y a dife-
rencia de Java, el rango de los valores que puede representar depende
de la plataforma.

En la mayor parte de las máquinas el long de C se almacena utilizando
32 bits, es decir, mediante el uso de una variable de tipo int de Python
podemos almacenar números de -231 a 231 - 1, o lo que es lo mismo, de
-2.147.483.648 a 2.147.483.647. En plataformas de 64 bits, el rango es
de -9.223.372.036.854.775.808 hasta 9.223.372.036.854.775.807.

El tipo long de Python permite almacenar números de cualquier preci-
sión, estando limitados solo por la memoria disponible en la máquina.

Al asignar un número a una variable esta pasará a tener tipo int, a
menos que el número sea tan grande como para requerir el uso del tipo
long.

type(entero) daría int
entero = 23

También podemos indicar a Python que un número se almacene usan-
do long añadiendo una L al final:

type(entero) daría long
entero = 23L

Python para todos

16

El literal que se asigna a la variable también se puede expresar como
un octal, anteponiendo un cero:

027 octal = 23 en base 10
entero = 027

o bien en hexadecimal, anteponiendo un 0x:

0×17 hexadecimal = 23 en base 10
entero = 0×17

Reales
Los números reales son los que tienen decimales. En Python se expre-
san mediante el tipo float. En otros lenguajes de programación, como
C, tenemos también el tipo double, similar a float pero de mayor
precisión (double = doble precisión). Python, sin embargo, implementa
su tipo float a bajo nivel mediante una variable de tipo double de C,
es decir, utilizando 64 bits, luego en Python siempre se utiliza doble
precisión, y en concreto se sigue el estándar IEEE 754: 1 bit para el
signo, 11 para el exponente, y 52 para la mantisa. Esto significa que los
valores que podemos representar van desde ±2,2250738585072020 x
10-308 hasta ±1,7976931348623157×10308.

La mayor parte de los lenguajes de programación siguen el mismo
esquema para la representación interna. Pero como muchos sabréis
esta tiene sus limitaciones, impuestas por el hardware. Por eso desde
Python 2.4 contamos también con un nuevo tipo Decimal, para el
caso de que se necesite representar fracciones de forma más precisa.
Sin embargo este tipo está fuera del alcance de este tutorial, y sólo es
necesario para el ámbito de la programación científica y otros rela-
cionados. Para aplicaciones normales podeis utilizar el tipo float sin
miedo, como ha venido haciéndose desde hace años, aunque teniendo
en cuenta que los números en coma flotante no son precisos (ni en este
ni en otros lenguajes de programación).

Para representar un número real en Python se escribe primero la parte
entera, seguido de un punto y por último la parte decimal.

real = 0.2703

Tipos básicos

17

También se puede utilizar notación científica, y añadir una e (de expo-
nente) para indicar un exponente en base 10. Por ejemplo:

real = 0.1e-3

sería equivalente a 0.1 x 10-3 = 0.1 x 0.001 = 0.0001

Complejos
Los números complejos son aquellos que tienen parte imaginaria. Si
no conocías de su existencia, es más que probable que nunca lo vayas a
necesitar, por lo que puedes saltarte este apartado tranquilamente. De
hecho la mayor parte de lenguajes de programación carecen de este
tipo, aunque sea muy utilizado por ingenieros y científicos en general.

En el caso de que necesitéis utilizar números complejos, o simplemen-
te tengáis curiosidad, os diré que este tipo, llamado complex en Python,
también se almacena usando coma flotante, debido a que estos núme-
ros son una extensión de los números reales. En concreto se almacena
en una estructura de C, compuesta por dos variables de tipo double,
sirviendo una de ellas para almacenar la parte real y la otra para la
parte imaginaria.

Los números complejos en Python se representan de la siguiente
forma:

complejo = 2.1 + 7.8j

Operadores
Veamos ahora qué podemos hacer con nuestros números usando los
operadores por defecto. Para operaciones más complejas podemos
recurrir al módulo math.

Operadores aritméticos
Operador Descripción Ejemplo
+ Suma r = 3 + 2 # r es 5

- Resta r = 4 - 7 # r es -3

Python para todos

18

Operador Descripción Ejemplo
- Negación r = -7 # r es -7

* Multiplicación r = 2 * 6 # r es 12

** Exponente r = 2 ** 6 # r es 64

/ División r = 3.5 / 2 # r es 1.75

// División entera r = 3.5 // 2 # r es 1.0

% Módulo r = 7 % 2 # r es 1

Puede que tengáis dudas sobre cómo funciona el operador de módulo,
y cuál es la diferencia entre división y división entera.

El operador de módulo no hace otra cosa que devolvernos el resto de
la división entre los dos operandos. En el ejemplo, 7/2 sería 3, con 1 de
resto, luego el módulo es 1.

La diferencia entre división y división entera no es otra que la que
indica su nombre. En la división el resultado que se devuelve es un
número real, mientras que en la división entera el resultado que se
devuelve es solo la parte entera.

No obstante hay que tener en cuenta que si utilizamos dos operandos
enteros, Python determinará que queremos que la variable resultado
también sea un entero, por lo que el resultado de, por ejemplo, 3 / 2 y
3 // 2 sería el mismo: 1.

Si quisiéramos obtener los decimales necesitaríamos que al menos uno
de los operandos fuera un número real, bien indicando los decimales

r = 3.0 / 2

o bien utilizando la función float (no es necesario que sepais lo que
significa el término función, ni que recordeis esta forma, lo veremos un
poco más adelante):

r = float(3) / 2

Esto es así porque cuando se mezclan tipos de números, Python con-

Tipos básicos

19

vierte todos los operandos al tipo más complejo de entre los tipos de
los operandos.

Operadores a nivel de bit
Si no conocéis estos operadores es poco probable que vayáis a necesi-
tarlos, por lo que podéis obviar esta parte. Si aún así tenéis curiosidad
os diré que estos son operadores que actúan sobre las representaciones
en binario de los operandos.

Por ejemplo, si veis una operación como 3 & 2, lo que estais viendo es
un and bit a bit entre los números binarios 11 y 10 (las representacio-
nes en binario de 3 y 2).

El operador and (&), del inglés “y”, devuelve 1 si el primer bit operando
es 1 y el segundo bit operando es 1. Se devuelve 0 en caso contrario.

El resultado de aplicar and bit a bit a 11 y 10 sería entonces el número
binario 10, o lo que es lo mismo, 2 en decimal (el primer dígito es 1
para ambas cifras, mientras que el segundo es 1 sólo para una de ellas).

El operador or (|), del inglés “o”, devuelve 1 si el primer operando es 1
o el segundo operando es 1. Para el resto de casos se devuelve 0.

El operador xor u or exclusivo (^) devuelve 1 si uno de los operandos
es 1 y el otro no lo es.

El operador not (~), del inglés “no”, sirve para negar uno a uno cada
bit; es decir, si el operando es 0, cambia a 1 y si es 1, cambia a 0.

Por último los operadores de desplazamiento (<< y >>) sirven para
desplazar los bits n posiciones hacia la izquierda o la derecha.

Operador Descripción Ejemplo
& and r = 3 & 2 # r es 2

| or r = 3 | 2 # r es 3

^ xor r = 3 ^ 2 # r es 1

~ not r = ~3 # r es -4

Python para todos

20

<< Desplazamiento izq. r = 3 << 1 # r es 6

>> Desplazamiento der. r = 3 >> 1 # r es 1

Cadenas
Las cadenas no son más que texto encerrado entre comillas simples
(‘cadena’) o dobles (“cadena”). Dentro de las comillas se pueden
añadir caracteres especiales escapándolos con \, como \n, el carácter de
nueva línea, o \t, el de tabulación.

Una cadena puede estar precedida por el carácter u o el carácter r, los
cuales indican, respectivamente, que se trata de una cadena que utiliza
codificación Unicode y una cadena raw (del inglés, cruda). Las cade-
nas raw se distinguen de las normales en que los caracteres escapados
mediante la barra invertida (\) no se sustituyen por sus contrapartidas.
Esto es especialmente útil, por ejemplo, para las expresiones regulares,
como veremos en el capítulo correspondiente.

unicode = u”äóè”
raw = r”\n”

También es posible encerrar una cadena entre triples comillas (simples
o dobles). De esta forma podremos escribir el texto en varias líneas, y
al imprimir la cadena, se respetarán los saltos de línea que introdujimos
sin tener que recurrir al carácter \n, así como las comillas sin tener que
escaparlas.

Las cadenas también admiten operadores como +, que funciona reali-
zando una concatenación de las cadenas utilizadas como operandos y
*, en la que se repite la cadena tantas veces como lo indique el número
utilizado como segundo operando.

a = “uno”
b = “dos”

c = a + b # c es “unodos”
c = a * 3 # c es “unounouno”

Booleanos

Tipos básicos

21

Como decíamos al comienzo del capítulo una variable de tipo boolea-
no sólo puede tener dos valores: True (cierto) y False (falso). Estos
valores son especialmente importantes para las expresiones condicio-
nales y los bucles, como veremos más adelante.

En realidad el tipo bool (el tipo de los booleanos) es una subclase del
tipo int. Puede que esto no tenga mucho sentido para tí si no conoces
los términos de la orientación a objetos, que veremos más adelantes,
aunque tampoco es nada importante.

Estos son los distintos tipos de operadores con los que podemos traba-
jar con valores booleanos, los llamados operadores lógicos o condicio-
nales:

Operador Descripción Ejemplo
and ¿se cumple a y b? r = True and False # r es

False

or ¿se cumple a o b? r = True or False # r es
True

not No a r = not True # r es
False

Los valores booleanos son además el resultado de expresiones que
utilizan operadores relacionales (comparaciones entre valores):

Operador Descripción Ejemplo
== ¿son iguales a y b? r = 5 == 3 # r es

False

!= ¿son distintos a y b? r = 5 != 3 # r es
True

< ¿es a menor que b? r = 5 < 3 # r es
False

> ¿es a mayor que b? r = 5 > 3 # r es
True

<= ¿es a menor o igual que b? r = 5 <= 5 # r es
True

>= ¿es a mayor o igual que b? r = 5 >= 3 # r es
True

22

Colecciones

En el capítulo anterior vimos algunos tipos básicos, como los números,
las cadenas de texto y los booleanos. En esta lección veremos algunos
tipos de colecciones de datos: listas, tuplas y diccionarios.

Listas
La lista es un tipo de colección ordenada. Sería equivalente a lo que en
otros lenguajes se conoce por arrays, o vectores.

Las listas pueden contener cualquier tipo de dato: números, cadenas,
booleanos, … y también listas.

Crear una lista es tan sencillo como indicar entre corchetes, y separa-
dos por comas, los valores que queremos incluir en la lista:

l = [22, True, “una lista”, [1, 2]]

Podemos acceder a cada uno de los elementos de la lista escribiendo el
nombre de la lista e indicando el índice del elemento entre corchetes.
Ten en cuenta sin embargo que el índice del primer elemento de la
lista es 0, y no 1:

l = [11, False]
mi_var = l[0] # mi_var vale 11

Si queremos acceder a un elemento de una lista incluida dentro de otra
lista tendremos que utilizar dos veces este operador, primero para in-
dicar a qué posición de la lista exterior queremos acceder, y el segundo
para seleccionar el elemento de la lista interior:

l = [“una lista”, [1, 2]]

Colecciones

23

mi_var = l[1][0] # mi_var vale 1

También podemos utilizar este operador para modificar un elemento
de la lista si lo colocamos en la parte izquierda de una asignación:

l = [22, True]
Ahora l valdrá [99, True]
l[0] = 99

El uso de los corchetes para acceder y modificar los elementos de una
lista es común en muchos lenguajes, pero Python nos depara varias
sorpresas muy agradables.

Una curiosidad sobre el operador [] de Python es que podemos utili-
zar también números negativos. Si se utiliza un número negativo como
índice, esto se traduce en que el índice empieza a contar desde el final,
hacia la izquierda; es decir, con [-1] accederíamos al último elemento
de la lista, con [-2] al penúltimo, con [-3], al antepenúltimo, y así
sucesivamente.

Otra cosa inusual es lo que en Python se conoce como slicing o parti-
cionado, y que consiste en ampliar este mecanismo para permitir selec-
cionar porciones de la lista. Si en lugar de un número escribimos dos
números inicio y fin separados por dos puntos (inicio:fin) Python
interpretará que queremos una lista que vaya desde la posición inicio
a la posición fin, sin incluir este último. Si escribimos tres números
(inicio:fin:salto) en lugar de dos, el tercero se utiliza para determi-
nar cada cuantas posiciones añadir un elemento a la lista.

l = [99, True, “una lista”, [1, 2]]
mi_var = l[0:2] # mi_var vale [99, True]
mi_var = l[0:4:2] # mi_var vale [99, “una lista”]

Los números negativos también se pueden utilizar en un slicing, con el
mismo comportamiento que se comentó anteriormente.

Hay que mencionar así mismo que no es necesario indicar el principio
y el final del slicing, sino que, si estos se omiten, se usarán por defecto
las posiciones de inicio y fin de la lista, respectivamente:

l = [99, True, “una lista”]

Python para todos

24

mi_var = l[1:] # mi_var vale [True, “una lista”]
mi_var = l[:2] # mi_var vale [99, True]
mi_var = l[:] # mi_var vale [99, True, “una lista”]
mi_var = l[::2] # mi_var vale [99, “una lista”]

También podemos utilizar este mecanismo para modificar la lista:

l = [99, True, “una lista”, [1, 2]]
l[0:2] = [0, 1] # l vale [0, 1, “una lista”, [1, 2]]

pudiendo incluso modificar el tamaño de la lista si la lista de la parte
derecha de la asignación tiene un tamaño menor o mayor que el de la
selección de la parte izquierda de la asignación:

l[0:2] = [False] # l vale [False, “una lista”, [1, 2]]

En todo caso las listas ofrecen mecanismos más cómodos para ser mo-
dificadas a través de las funciones de la clase correspondiente, aunque
no veremos estos mecanismos hasta más adelante, después de explicar
lo que son las clases, los objetos y las funciones.

Tuplas
Todo lo que hemos explicado sobre las listas se aplica también a las
tuplas, a excepción de la forma de definirla, para lo que se utilizan
paréntesis en lugar de corchetes.

t = (1, 2, True, “python”)

En realidad el constructor de la tupla es la coma, no el paréntesis, pero
el intérprete muestra los paréntesis, y nosotros deberíamos utilizarlos,
por claridad.

>>> t = 1, 2, 3
>>> type(t)
type “tuple”

Además hay que tener en cuenta que es necesario añadir una coma
para tuplas de un solo elemento, para diferenciarlo de un elemento
entre paréntesis.

>>> t = (1)

Colecciones

25

>>> type(t)
type “int”
>>> t = (1,)
>>> type(t)
type “tuple”

Para referirnos a elementos de una tupla, como en una lista, se usa el
operador []:

mi_var = t[0] # mi_var es 1
mi_var = t[0:2] # mi_var es (1, 2)

Podemos utilizar el operador [] debido a que las tuplas, al igual que
las listas, forman parte de un tipo de objetos llamados secuencias.
Permitirme un pequeño inciso para indicaros que las cadenas de texto
también son secuencias, por lo que no os extrañará que podamos hacer
cosas como estas:

c = “hola mundo”
c[0] # h
c[5:] # mundo
c[::3] # hauo

Volviendo al tema de las tuplas, su diferencia con las listas estriba en
que las tuplas no poseen estos mecanismos de modificación a través
de funciones tan útiles de los que hablábamos al final de la anterior
sección.

Además son inmutables, es decir, sus valores no se pueden modificar
una vez creada; y tienen un tamaño fijo.

A cambio de estas limitaciones las tuplas son más “ligeras” que las
listas, por lo que si el uso que le vamos a dar a una colección es muy
básico, puedes utilizar tuplas en lugar de listas y ahorrar memoria.

Diccionarios
Los diccionarios, también llamados matrices asociativas, deben su
nombre a que son colecciones que relacionan una clave y un valor. Por
ejemplo, veamos un diccionario de películas y directores:

d = {“Love Actually “: “Richard Curtis”,

Python para todos

26

 “Kill Bill”: “Tarantino”,
 “Amélie”: “Jean-Pierre Jeunet”}

El primer valor se trata de la clave y el segundo del valor asociado
a la clave. Como clave podemos utilizar cualquier valor inmutable:
podríamos usar números, cadenas, booleanos, tuplas, … pero no listas
o diccionarios, dado que son mutables. Esto es así porque los diccio-
narios se implementan como tablas hash, y a la hora de introducir un
nuevo par clave-valor en el diccionario se calcula el hash de la clave
para después poder encontrar la entrada correspondiente rápidamente.
Si se modificara el objeto clave después de haber sido introducido en el
diccionario, evidentemente, su hash también cambiaría y no podría ser
encontrado.

La diferencia principal entre los diccionarios y las listas o las tuplas es
que a los valores almacenados en un diccionario se les accede no por su
índice, porque de hecho no tienen orden, sino por su clave, utilizando
de nuevo el operador [].

d[“Love Actually “] # devuelve “Richard Curtis”

Al igual que en listas y tuplas también se puede utilizar este operador
para reasignar valores.

d[“Kill Bill”] = “Quentin Tarantino”

Sin embargo en este caso no se puede utilizar slicing, entre otras cosas
porque los diccionarios no son secuencias, si no mappings (mapeados,
asociaciones).

27

Control de flujo

En esta lección vamos a ver los condicionales y los bucles.

Sentencias condicionales
Si un programa no fuera más que una lista de órdenes a ejecutar de
forma secuencial, una por una, no tendría mucha utilidad. Los con-
dicionales nos permiten comprobar condiciones y hacer que nuestro
programa se comporte de una forma u otra, que ejecute un fragmento
de código u otro, dependiendo de esta condición.

Aquí es donde cobran su importancia el tipo booleano y los operadores
lógicos y relacionales que aprendimos en el capítulo sobre los tipos
básicos de Python.

if
La forma más simple de un estamento condicional es un if (del inglés
si) seguido de la condición a evaluar, dos puntos (:) y en la siguiente
línea e indentado, el código a ejecutar en caso de que se cumpla dicha
condición.

fav = “mundogeek.net”
si (if) fav es igual a “mundogeek.net”
if fav == “mundogeek.net”:
 print “Tienes buen gusto!”
 print “Gracias”

Como veis es bastante sencillo.

Eso si, aseguraros de que indentáis el código tal cual se ha hecho en el
ejemplo, es decir, aseguraros de pulsar Tabulación antes de las dos ór-
denes print, dado que esta es la forma de Python de saber que vuestra
intención es la de que los dos print se ejecuten sólo en el caso de que

Python para todos

28

se cumpla la condición, y no la de que se imprima la primera cadena si
se cumple la condición y la otra siempre, cosa que se expresaría así:

if fav == “mundogeek.net”:
 print “Tienes buen gusto!”
print “Gracias”

En otros lenguajes de programación los bloques de código se determi-
nan encerrándolos entre llaves, y el indentarlos no se trata más que de
una buena práctica para que sea más sencillo seguir el flujo del progra-
ma con un solo golpe de vista. Por ejemplo, el código anterior expresa-
do en Java sería algo así:

String fav = “mundogeek.net”;
if (fav.equals(“mundogeek.net”){
 System.out.println(“Tienes buen gusto!”);
 System.out.println(“Gracias”);
}

Sin embargo, como ya hemos comentado, en Python se trata de una
obligación, y no de una elección. De esta forma se obliga a los progra-
madores a indentar su código para que sea más sencillo de leer :)

if … else
Vamos a ver ahora un condicional algo más complicado. ¿Qué haría-
mos si quisiéramos que se ejecutaran unas ciertas órdenes en el caso de
que la condición no se cumpliera? Sin duda podríamos añadir otro if
que tuviera como condición la negación del primero:

if fav == “mundogeek.net”:
 print “Tienes buen gusto!”
 print “Gracias”

if fav != “mundogeek.net”:
 print “Vaya, que lástima”

pero el condicional tiene una segunda construcción mucho más útil:

if fav == “mundogeek.net”:
 print “Tienes buen gusto!”
 print “Gracias”
else:
 print “Vaya, que lástima”

Control de flujo

29

Vemos que la segunda condición se puede sustituir con un else (del
inglés: si no, en caso contrario). Si leemos el código vemos que tiene
bastante sentido: “si fav es igual a mundogeek.net, imprime esto y esto,
si no, imprime esto otro”.

if … elif … elif … else
Todavía queda una construcción más que ver, que es la que hace uso
del elif.

if numero < 0:
 print “Negativo”
elif numero > 0:
 print “Positivo”
else:
 print “Cero”

elif es una contracción de else if, por lo tanto elif numero > 0 puede
leerse como “si no, si numero es mayor que 0”. Es decir, primero se
evalúa la condición del if. Si es cierta, se ejecuta su código y se con-
tinúa ejecutando el código posterior al condicional; si no se cumple,
se evalúa la condición del elif. Si se cumple la condición del elif
se ejecuta su código y se continua ejecutando el código posterior al
condicional; si no se cumple y hay más de un elif se continúa con el
siguiente en orden de aparición. Si no se cumple la condición del if ni
de ninguno de los elif, se ejecuta el código del else.

A if C else B

También existe una construcción similar al operador ? de otros lengua-
jes, que no es más que una forma compacta de expresar un if else. En
esta construcción se evalúa el predicado C y se devuelve A si se cumple
o B si no se cumple: A if C else B. Veamos un ejemplo:

var = “par” if (num % 2 == 0) else “impar”

Y eso es todo. Si conocéis otros lenguajes de programación puede que
esperarais que os hablara ahora del switch, pero en Python no existe
esta construcción, que podría emularse con un simple diccionario, así
que pasemos directamente a los bucles.

Python para todos

30

Bucles
Mientras que los condicionales nos permiten ejecutar distintos frag-
mentos de código dependiendo de ciertas condiciones, los bucles nos
permiten ejecutar un mismo fragmento de código un cierto número de
veces, mientras se cumpla una determinada condición.

while
El bucle while (mientras) ejecuta un fragmento de código mientras se
cumpla una condición.

edad = 0
while edad < 18:
 edad = edad + 1
 print “Felicidades, tienes “ + str(edad)

La variable edad comienza valiendo 0. Como la condición de que edad
es menor que 18 es cierta (0 es menor que 18), se entra en el bucle.
Se aumenta edad en 1 y se imprime el mensaje informando de que
el usuario ha cumplido un año. Recordad que el operador + para las
cadenas funciona concatenando ambas cadenas. Es necesario utilizar
la función str (de string, cadena) para crear una cadena a partir del
número, dado que no podemos concatenar números y cadenas, pero ya
comentaremos esto y mucho más en próximos capítulos.

Ahora se vuelve a evaluar la condición, y 1 sigue siendo menor que 18,
por lo que se vuelve a ejecutar el código que aumenta la edad en un
año e imprime la edad en la pantalla. El bucle continuará ejecutándose
hasta que edad sea igual a 18, momento en el cual la condición dejará
de cumplirse y el programa continuaría ejecutando las instrucciones
siguientes al bucle.

Ahora imaginemos que se nos olvidara escribir la instrucción que
aumenta la edad. En ese caso nunca se llegaría a la condición de que
edad fuese igual o mayor que 18, siempre sería 0, y el bucle continuaría
indefinidamente escribiendo en pantalla Has cumplido 0.

Esto es lo que se conoce como un bucle infinito.

Control de flujo

31

Sin embargo hay situaciones en las que un bucle infinito es útil. Por
ejemplo, veamos un pequeño programa que repite todo lo que el usua-
rio diga hasta que escriba adios.

while True:
 entrada = raw_input(“> “)
 if entrada == “adios”:
 break
 else:
 print entrada

Para obtener lo que el usuario escriba en pantalla utilizamos la función
raw_input. No es necesario que sepais qué es una función ni cómo
funciona exactamente, simplemente aceptad por ahora que en cada
iteración del bucle la variable entrada contendrá lo que el usuario
escribió hasta pulsar Enter.

Comprobamos entonces si lo que escribió el usuario fue adios, en cuyo
caso se ejecuta la orden break o si era cualquier otra cosa, en cuyo caso
se imprime en pantalla lo que el usuario escribió.

La palabra clave break (romper) sale del bucle en el que estamos.

Este bucle se podría haber escrito también, no obstante, de la siguiente
forma:

salir = False
while not salir:
 entrada = raw_input()
 if entrada == “adios”:
 salir = True
 else:
 print entrada

pero nos ha servido para ver cómo funciona break.

Otra palabra clave que nos podemos encontrar dentro de los bucles es
continue (continuar). Como habréis adivinado no hace otra cosa que
pasar directamente a la siguiente iteración del bucle.

edad = 0
while edad < 18:

Python para todos

32

 edad = edad + 1
 if edad % 2 == 0:
 continue
 print “Felicidades, tienes “ + str(edad)

Como veis esta es una pequeña modificación de nuestro programa de
felicitaciones. En esta ocasión hemos añadido un if que comprueba si
la edad es par, en cuyo caso saltamos a la próxima iteración en lugar de
imprimir el mensaje. Es decir, con esta modificación el programa sólo
imprimiría felicitaciones cuando la edad fuera impar.

for … in
A los que hayáis tenido experiencia previa con según que lenguajes este
bucle os va a sorprender gratamente. En Python for se utiliza como
una forma genérica de iterar sobre una secuencia. Y como tal intenta
facilitar su uso para este fin.

Este es el aspecto de un bucle for en Python:

secuencia = [“uno”, “dos”, “tres”]
for elemento in secuencia:
 print elemento

Como hemos dicho los for se utilizan en Python para recorrer secuen-
cias, por lo que vamos a utilizar un tipo secuencia, como es la lista, para
nuestro ejemplo.

Leamos la cabecera del bucle como si de lenguaje natural se tratara:
“para cada elemento en secuencia”. Y esto es exactamente lo que hace
el bucle: para cada elemento que tengamos en la secuencia, ejecuta
estas líneas de código.

Lo que hace la cabecera del bucle es obtener el siguiente elemento de
la secuencia secuencia y almacenarlo en una variable de nombre ele-
mento. Por esta razón en la primera iteración del bucle elemento valdrá
“uno”, en la segunda “dos”, y en la tercera “tres”.

Fácil y sencillo.

En C o C++, por ejemplo, lo que habríamos hecho sería iterar sobre las

Control de flujo

33

posiciones, y no sobre los elementos:

int mi_array[] = {1, 2, 3, 4, 5};
int i;
for(i = 0; i < 5; i++) {
 printf(“%d\n”, mi_array[i]);
}

Es decir, tendríamos un bucle for que fuera aumentando una variable
i en cada iteración, desde 0 al tamaño de la secuencia, y utilizaríamos
esta variable a modo de índice para obtener cada elemento e imprimir-
lo.

Como veis el enfoque de Python es más natural e intuitivo.

Pero, ¿qué ocurre si quisiéramos utilizar el for como si estuviéramos en
C o en Java, por ejemplo, para imprimir los números de 30 a 50? No os
preocupéis, porque no necesitaríais crear una lista y añadir uno a uno
los números del 30 al 50. Python proporciona una función llamada
range (rango) que permite generar una lista que vaya desde el primer
número que le indiquemos al segundo. Lo veremos después de ver al
fin a qué se refiere ese término tan recurrente: las funciones.

34

Funciones

Una función es un fragmento de código con un nombre asociado que
realiza una serie de tareas y devuelve un valor. A los fragmentos de
código que tienen un nombre asociado y no devuelven valores se les
suele llamar procedimientos. En Python no existen los procedimien-
tos, ya que cuando el programador no especifica un valor de retorno la
función devuelve el valor None (nada), equivalente al null de Java.

Además de ayudarnos a programar y depurar dividiendo el programa
en partes las funciones también permiten reutilizar código.

En Python las funciones se declaran de la siguiente forma:

def mi_funcion(param1, param2):
 print param1
 print param2

Es decir, la palabra clave def seguida del nombre de la función y entre
paréntesis los argumentos separados por comas. A continuación, en
otra línea, indentado y después de los dos puntos tendríamos las líneas
de código que conforman el código a ejecutar por la función.

También podemos encontrarnos con una cadena de texto como
primera línea del cuerpo de la función. Estas cadenas se conocen con
el nombre de docstring (cadena de documentación) y sirven, como su
nombre indica, a modo de documentación de la función.

def mi_funcion(param1, param2):
 “““Esta funcion imprime los dos valores pasados
 como parametros”””
 print param1
 print param2

Esto es lo que imprime el opeardor ? de iPython o la función help

Funciones

35

del lenguaje para proporcionar una ayuda sobre el uso y utilidad de
las funciones. Todos los objetos pueden tener docstrings, no solo las
funciones, como veremos más adelante.

Volviendo a la declaración de funciones, es importante aclarar que
al declarar la función lo único que hacemos es asociar un nombre al
fragmento de código que conforma la función, de forma que podamos
ejecutar dicho código más tarde referenciándolo por su nombre. Es
decir, a la hora de escribir estas líneas no se ejecuta la función. Para
llamar a la función (ejecutar su código) se escribiría:

mi_funcion(“hola”, 2)

Es decir, el nombre de la función a la que queremos llamar seguido de
los valores que queramos pasar como parámetros entre paréntesis. La
asociación de los parámetros y los valores pasados a la función se hace
normalmente de izquierda a derecha: como a param1 le hemos dado un
valor “hola” y param2 vale 2, mi_funcion imprimiría hola en una línea,
y a continuación 2.

Sin embargo también es posible modificar el orden de los parámetros
si indicamos el nombre del parámetro al que asociar el valor a la hora
de llamar a la función:

mi_funcion(param2 = 2, param1 = “hola”)

El número de valores que se pasan como parámetro al llamar a la fun-
ción tiene que coincidir con el número de parámetros que la función
acepta según la declaración de la función. En caso contrario Python se
quejará:

>>> mi_funcion(“hola”)
Traceback (most recent call last):
File “<stdin>”, line 1, in <module>
TypeError: mi_funcion() takes exactly 2 arguments (1 given)

También es posible, no obstante, definir funciones con un número va-
riable de argumentos, o bien asignar valores por defecto a los paráme-
tros para el caso de que no se indique ningún valor para ese parámetro
al llamar a la función.

Python para todos

36

Los valores por defecto para los parámetros se definen situando un
signo igual después del nombre del parámetro y a continuación el valor
por defecto:

def imprimir(texto, veces = 1):
 print veces * texto

En el ejemplo anterior si no indicamos un valor para el segundo
parámetro se imprimirá una sola vez la cadena que le pasamos como
primer parámetro:

>>> imprimir(“hola”)
hola

si se le indica otro valor, será este el que se utilice:

>>> imprimir(“hola”, 2)
holahola

Para definir funciones con un número variable de argumentos coloca-
mos un último parámetro para la función cuyo nombre debe preceder-
se de un signo *:

def varios(param1, param2, *otros):
 for val in otros:
 print otros

varios(1, 2)
varios(1, 2, 3)
varios(1, 2, 3, 4)

Esta sintaxis funciona creando una tupla (de nombre otros en el
ejemplo) en la que se almacenan los valores de todos los parámetros
extra pasados como argumento. Para la primera llamada, varios(1, 2),
la tupla otros estaría vacía dado que no se han pasado más parámetros
que los dos definidos por defecto, por lo tanto no se imprimiría nada.
En la segunda llamada otros valdría (3,), y en la tercera (3, 4).

También se puede preceder el nombre del último parámetro con **, en
cuyo caso en lugar de una tupla se utilizaría un diccionario. Las claves
de este diccionario serían los nombres de los parámetros indicados al

Funciones

37

llamar a la función y los valores del diccionario, los valores asociados a
estos parámetros.

En el siguiente ejemplo se utiliza la función items de los diccionarios,
que devuelve una lista con sus elementos, para imprimir los parámetros
que contiene el diccionario.

def varios(param1, param2, **otros):
 for i in otros.items():
 print i

varios(1, 2, tercero = 3)

Los que conozcáis algún otro lenguaje de programación os estaréis
preguntando si en Python al pasar una variable como argumento de
una función estas se pasan por referencia o por valor. En el paso por
referencia lo que se pasa como argumento es una referencia o puntero
a la variable, es decir, la dirección de memoria en la que se encuentra el
contenido de la variable, y no el contenido en si. En el paso por valor,
por el contrario, lo que se pasa como argumento es el valor que conte-
nía la variable.

La diferencia entre ambos estriba en que en el paso por valor los
cambios que se hagan sobre el parámetro no se ven fuera de la fun-
ción, dado que los argumentos de la función son variables locales a la
función que contienen los valores indicados por las variables que se
pasaron como argumento. Es decir, en realidad lo que se le pasa a la
función son copias de los valores y no las variables en si.

Si quisiéramos modificar el valor de uno de los argumentos y que estos
cambios se reflejaran fuera de la función tendríamos que pasar el pará-
metro por referencia.

En C los argumentos de las funciones se pasan por valor, aunque se
puede simular el paso por referencia usando punteros. En Java también
se usa paso por valor, aunque para las variables que son objetos lo que
se hace es pasar por valor la referencia al objeto, por lo que en realidad
parece paso por referencia.

En Python también se utiliza el paso por valor de referencias a objetos,

Python para todos

38

como en Java, aunque en el caso de Python, a diferencia de Java, todo
es un objeto (para ser exactos lo que ocurre en realidad es que al objeto
se le asigna otra etiqueta o nombre en el espacio de nombres local de la
función).

Sin embargo no todos los cambios que hagamos a los parámetros
dentro de una función Python se reflejarán fuera de esta, ya que hay
que tener en cuenta que en Python existen objetos inmutables, como
las tuplas, por lo que si intentáramos modificar una tupla pasada como
parámetro lo que ocurriría en realidad es que se crearía una nueva ins-
tancia, por lo que los cambios no se verían fuera de la función.

Veamos un pequeño programa para demostrarlo:

def f(x, y):
 x = x + 3
 y.append(23)
 print x, y

x = 22
y = [22]
f(x, y)
print x, y

El resultado de la ejecución de este programa sería

25 [22, 23]
22 [22, 23]

Como vemos la variable x no conserva los cambios una vez salimos de
la función porque los enteros son inmutables en Python. Sin embargo
la variable y si los conserva, porque las listas son mutables.

En resumen: los valores mutables se comportan como paso por refe-
rencia, y los inmutables como paso por valor.

Con esto terminamos todo lo relacionado con los parámetros de las
funciones. Veamos por último cómo devolver valores, para lo que se
utiliza la palabra clave return:

def sumar(x, y):
 return x + y

Funciones

39

print sumar(3, 2)

Como vemos esta función tan sencilla no hace otra cosa que sumar los
valores pasados como parámetro y devolver el resultado como valor de
retorno.

También podríamos pasar varios valores que retornar a return.

def f(x, y):
 return x * 2, y * 2

a, b = f(1, 2)

Sin embargo esto no quiere decir que las funciones Python puedan de-
volver varios valores, lo que ocurre en realidad es que Python crea una
tupla al vuelo cuyos elementos son los valores a retornar, y esta única
variable es la que se devuelve.

40

Orientación a
Objetos

En el capítulo de introducción ya comentábamos que Python es un
lenguaje multiparadigma en el se podía trabajar con programación es-
tructurada, como veníamos haciendo hasta ahora, o con programación
orientada a objetos o programación funcional.

La Programación Orientada a Objetos (POO u OOP según sus siglas
en inglés) es un paradigma de programación en el que los conceptos
del mundo real relevantes para nuestro problema se modelan a través
de clases y objetos, y en el que nuestro programa consiste en una serie
de interacciones entre estos objetos.

Clases y objetos
Para entender este paradigma primero tenemos que comprender qué es
una clase y qué es un objeto. Un objeto es una entidad que agrupa un
estado y una funcionalidad relacionadas. El estado del objeto se define
a través de variables llamadas atributos, mientras que la funcionalidad
se modela a través de funciones a las que se les conoce con el nombre
de métodos del objeto.

Un ejemplo de objeto podría ser un coche, en el que tendríamos atri-
butos como la marca, el número de puertas o el tipo de carburante y
métodos como arrancar y parar. O bien cualquier otra combinación de
atributos y métodos según lo que fuera relevante para nuestro progra-
ma.

Una clase, por otro lado, no es más que una plantilla genérica a partir

Orientación a objetos

41

de la cuál instanciar los objetos; plantilla que es la que define qué atri-
butos y métodos tendrán los objetos de esa clase.

Volviendo a nuestro ejemplo: en el mundo real existe un conjunto de
objetos a los que llamamos coches y que tienen un conjunto de atribu-
tos comunes y un comportamiento común, esto es a lo que llamamos
clase. Sin embargo, mi coche no es igual que el coche de mi vecino, y
aunque pertenecen a la misma clase de objetos, son objetos distintos.

En Python las clases se definen mediante la palabra clave class segui-
da del nombre de la clase, dos puntos (:) y a continuación, indentado,
el cuerpo de la clase. Como en el caso de las funciones, si la primera
línea del cuerpo se trata de una cadena de texto, esta será la cadena de
documentación de la clase o docstring.

class Coche:
 “””Abstraccion de los objetos coche.”””
 def __init__(self, gasolina):
 self.gasolina = gasolina
 print “Tenemos”, gasolina, “litros”

 def arrancar(self):
 if self.gasolina > 0:
 print “Arranca”
 else:
 print “No arranca”

 def conducir(self):
 if self.gasolina > 0:
 self.gasolina -= 1
 print “Quedan”, self.gasolina, “litros”
 else:
 print “No se mueve”

Lo primero que llama la atención en el ejemplo anterior es el nombre
tan curioso que tiene el método __init__. Este nombre es una conven-
ción y no un capricho. El método __init__, con una doble barra baja al
principio y final del nombre, se ejecuta justo después de crear un nuevo
objeto a partir de la clase, proceso que se conoce con el nombre de
instanciación. El método __init__ sirve, como sugiere su nombre, para
realizar cualquier proceso de inicialización que sea necesario.

Como vemos el primer parámetro de __init__ y del resto de métodos

Python para todos

42

de la clase es siempre self. Esta es una idea inspirada en Modula-3 y
sirve para referirse al objeto actual. Este mecanismo es necesario para
poder acceder a los atributos y métodos del objeto diferenciando, por
ejemplo, una variable local mi_var de un atributo del objeto self.
mi_var.

Si volvemos al método __init__ de nuestra clase Coche veremos cómo
se utiliza self para asignar al atributo gasolina del objeto (self.gaso-
lina) el valor que el programador especificó para el parámetro gasoli-
na. El parámetro gasolina se destruye al final de la función, mientras
que el atributo gasolina se conserva (y puede ser accedido) mientras el
objeto viva.

Para crear un objeto se escribiría el nombre de la clase seguido de cual-
quier parámetro que sea necesario entre paréntesis. Estos parámetros
son los que se pasarán al método __init__, que como decíamos es el
método que se llama al instanciar la clase.

mi_coche = Coche(3)

Os preguntareis entonces cómo es posible que a la hora de crear nues-
tro primer objeto pasemos un solo parámetro a __init__, el número
3, cuando la definición de la función indica claramente que precisa de
dos parámetros (self y gasolina). Esto es así porque Python pasa el
primer argumento (la referencia al objeto que se crea) automágicamen-
te.

Ahora que ya hemos creado nuestro objeto, podemos acceder a sus
atributos y métodos mediante la sintaxis objeto.atributo y objeto.
metodo():

>>> print mi_coche.gasolina
3
>>> mi_coche.arrancar()
Arranca
>>> mi_coche.conducir()
Quedan 2 litros
>>> mi_coche.conducir()
Quedan 1 litros
>>> mi_coche.conducir()
Quedan 0 litros
>>> mi_coche.conducir()

Orientación a objetos

43

No se mueve
>>> mi_coche.arrancar()
No arranca
>>> print mi_coche.gasolina
0

Como último apunte recordar que en Python, como ya se comentó
en repetidas ocasiones anteriormente, todo son objetos. Las cadenas,
por ejemplo, tienen métodos como upper(), que devuelve el texto en
mayúsculas o count(sub), que devuelve el número de veces que se
encontró la cadena sub en el texto.

Herencia
Hay tres conceptos que son básicos para cualquier lenguaje de pro-
gramación orientado a objetos: el encapsulamiento, la herencia y el
polimorfismo.

En un lenguaje orientado a objetos cuando hacemos que una clase
(subclase) herede de otra clase (superclase) estamos haciendo que la
subclase contenga todos los atributos y métodos que tenía la supercla-
se. No obstante al acto de heredar de una clase también se le llama a
menudo “extender una clase”.

Supongamos que queremos modelar los instrumentos musicales de
una banda, tendremos entonces una clase Guitarra, una clase Batería,
una clase Bajo, etc. Cada una de estas clases tendrá una serie de atribu-
tos y métodos, pero ocurre que, por el mero hecho de ser instrumentos
musicales, estas clases compartirán muchos de sus atributos y métodos;
un ejemplo sería el método tocar().

Es más sencillo crear un tipo de objeto Instrumento con las atributos y
métodos comunes e indicar al programa que Guitarra, Batería y Bajo
son tipos de instrumentos, haciendo que hereden de Instrumento.

Para indicar que una clase hereda de otra se coloca el nombre de la cla-
se de la que se hereda entre paréntesis después del nombre de la clase:

class Instrumento:
 def __init__(self, precio):

Python para todos

44

 self.precio = precio

 def tocar(self):
 print “Estamos tocando musica”

 def romper(self):
 print “Eso lo pagas tu”
 print “Son”, self.precio, “$$$”

class Bateria(Instrumento):
 pass

class Guitarra(Instrumento):
 pass

Como Bateria y Guitarra heredan de Instrumento, ambos tienen un
método tocar() y un método romper(), y se inicializan pasando un
parámetro precio. Pero, ¿qué ocurriría si quisiéramos especificar un
nuevo parámetro tipo_cuerda a la hora de crear un objeto Guitarra?
Bastaría con escribir un nuevo método __init__ para la clase Guitarra
que se ejecutaría en lugar del __init__ de Instrumento. Esto es lo que
se conoce como sobreescribir métodos.

Ahora bien, puede ocurrir en algunos casos que necesitemos sobrees-
cribir un método de la clase padre, pero que en ese método queramos
ejecutar el método de la clase padre porque nuestro nuevo método no
necesite más que ejecutar un par de nuevas instrucciones extra. En ese
caso usaríamos la sintaxis SuperClase.metodo(self, args) para llamar
al método de igual nombre de la clase padre. Por ejemplo, para llamar
al método __init__ de Instrumento desde Guitarra usaríamos Instru-
mento.__init__(self, precio)

Observad que en este caso si es necesario especificar el parámetro self.

Herencia múltiple
En Python, a diferencia de otros lenguajes como Java o C#, se permite
la herencia múltiple, es decir, una clase puede heredar de varias clases a
la vez. Por ejemplo, podríamos tener una clase Cocodrilo que heredara
de la clase Terrestre, con métodos como caminar() y atributos como
velocidad_caminar y de la clase Acuatico, con métodos como nadar()
y atributos como velocidad_nadar. Basta con enumerar las clases de

Orientación a objetos

45

las que se hereda separándolas por comas:

class Cocodrilo(Terrestre, Acuatico):
 pass

En el caso de que alguna de las clases padre tuvieran métodos con el
mismo nombre y número de parámetros las clases sobreescribirían la
implementación de los métodos de las clases más a su derecha en la
definición.

En el siguiente ejemplo, como Terrestre se encuentra más a la iz-
quierda, sería la definición de desplazar de esta clase la que prevale-
cería, y por lo tanto si llamamos al método desplazar de un objeto de
tipo Cocodrilo lo que se imprimiría sería “El animal anda”.

class Terrestre:
 def desplazar(self):
 print “El animal anda”

class Acuatico:
 def desplazar(self):
 print “El animal nada”

class Cocodrilo(Terrestre, Acuatico):
 pass

c = Cocodrilo()
c.desplazar()

Polimorfismo
La palabra polimorfismo, del latín polys morphos (varias formas), se re-
fiere a la habilidad de objetos de distintas clases de responder al mismo
mensaje. Esto se puede conseguir a través de la herencia: un objeto de
una clase derivada es al mismo tiempo un objeto de la clase padre, de
forma que allí donde se requiere un objeto de la clase padre también se
puede utilizar uno de la clase hija.

Python, al ser de tipado dinámico, no impone restricciones a los tipos
que se le pueden pasar a una función, por ejemplo, más allá de que el
objeto se comporte como se espera: si se va a llamar a un método f()
del objeto pasado como parámetro, por ejemplo, evidentemente el
objeto tendrá que contar con ese método. Por ese motivo, a diferencia

Python para todos

46

de lenguajes de tipado estático como Java o C++, el polimorfismo en
Python no es de gran importancia.

En ocasiones también se utiliza el término polimorfismo para referirse
a la sobrecarga de métodos, término que se define como la capacidad
del lenguaje de determinar qué método ejecutar de entre varios méto-
dos con igual nombre según el tipo o número de los parámetros que se
le pasa. En Python no existe sobrecarga de métodos (el último método
sobreescribiría la implementación de los anteriores), aunque se puede
conseguir un comportamiento similar recurriendo a funciones con va-
lores por defecto para los parámetros o a la sintaxis *params o **params
explicada en el capítulo sobre las funciones en Python, o bien usando
decoradores (mecanismo que veremos más adelante).

Encapsulación
La encapsulación se refiere a impedir el acceso a determinados mé-
todos y atributos de los objetos estableciendo así qué puede utilizarse
desde fuera de la clase.

Esto se consigue en otros lenguajes de programación como Java utili-
zando modificadores de acceso que definen si cualquiera puede acceder
a esa función o variable (public) o si está restringido el acceso a la
propia clase (private).

En Python no existen los modificadores de acceso, y lo que se suele
hacer es que el acceso a una variable o función viene determinado por
su nombre: si el nombre comienza con dos guiones bajos (y no termina
también con dos guiones bajos) se trata de una variable o función pri-
vada, en caso contrario es pública. Los métodos cuyo nombre comien-
za y termina con dos guiones bajos son métodos especiales que Python
llama automáticamente bajo ciertas circunstancias, como veremos al
final del capítulo.

En el siguiente ejemplo sólo se imprimirá la cadena correspondiente al
método publico(), mientras que al intentar llamar al método __pri-
vado() Python lanzará una excepción quejándose de que no existe
(evidentemente existe, pero no lo podemos ver porque es privado).

Orientación a objetos

47

class Ejemplo:
 def publico(self):
 print “Publico”

 def __privado(self):
 print “Privado”

ej = Ejemplo()
ej.publico()
ej.__privado()

Este mecanismo se basa en que los nombres que comienzan con un
doble guión bajo se renombran para incluir el nombre de la clase. Esto
implica que el método o atributo no es realmente privado, y podemos
acceder a él mediante una pequeña trampa:

ej._Ejemplo__privado()

En ocasiones también puede suceder que queramos permitir el acceso
a algún atributo de nuestro objeto, pero que este se produzca de forma
controlada. Para esto podemos escribir métodos cuyo único cometido
sea este, métodos que normalmente, por convención, tienen nombres
como getVariable y setVariable; de ahí que se conozcan también con
el nombre de getters y setters.

class Fecha():
 def __init__(self):
 self.__dia = 1

 def getDia(self):
 return self.__dia

 def setDia(self, dia):
 if dia > 0 and dia < 31:
 self.__dia = dia
 else:
 print “Error”

mi_fecha = Fecha()
mi_fecha.setDia(33)

Esto se podría simplificar mediante propiedades, que abstraen al usua-
rio del hecho de que se está utilizando métodos entre bambalinas para
obtener y modificar los valores del atributo:

Python para todos

48

class Fecha(object):
 def __init__(self):
 self.__dia = 1

 def getDia(self):
 return self.__dia

 def setDia(self, dia):
 if dia > 0 and dia < 31:
 self.__dia = dia
 else:
 print “Error”

 dia = property(getDia, setDia)

mi_fecha = Fecha()
mi_fecha.dia = 33

Clases de “nuevo-estilo”
En el ejemplo anterior os habrá llamado la atención el hecho de que la
clase Fecha derive de object. La razón de esto es que para poder usar
propiedades la clase tiene que ser de “nuevo-estilo”, clases enriquecidas
introducidas en Python 2.2 que serán el estándar en Python 3.0 pero
que aún conviven con las clases “clásicas” por razones de retrocompa-
tibilidad. Además de las propiedades las clases de nuevo estilo añaden
otras funcionalidades como descriptores o métodos estáticos.

Para que una clase sea de nuevo estilo es necesario, por ahora, que
extienda una clase de nuevo-estilo. En el caso de que no sea necesa-
rio heredar el comportamiento o el estado de ninguna clase, como en
nuestro ejemplo anterior, se puede heredar de object, que es un objeto
vacio que sirve como base para todas las clases de nuevo estilo.

La diferencia principal entre las clases antiguas y las de nuevo estilo
consiste en que a la hora de crear una nueva clase anteriormente no se
definía realmente un nuevo tipo, sino que todos los objetos creados a
partir de clases, fueran estas las clases que fueran, eran de tipo instan-
ce.

Métodos especiales
Ya vimos al principio del artículo el uso del método __init__. Exis-

Orientación a objetos

49

ten otros métodos con significados especiales, cuyos nombres siempre
comienzan y terminan con dos guiones bajos. A continuación se listan
algunos especialmente útiles.

__init__(self, args)

Método llamado después de crear el objeto para realizar tareas de
inicialización.

__new__(cls, args)

Método exclusivo de las clases de nuevo estilo que se ejecuta antes que
__init__ y que se encarga de construir y devolver el objeto en sí. Es
equivalente a los constructores de C++ o Java. Se trata de un método
estático, es decir, que existe con independencia de las instancias de
la clase: es un método de clase, no de objeto, y por lo tanto el primer
parámetro no es self, sino la propia clase: cls.

__del__(self)

Método llamado cuando el objeto va a ser borrado. También llamado
destructor, se utiliza para realizar tareas de limpieza.

__str__(self)

Método llamado para crear una cadena de texto que represente a nues-
tro objeto. Se utiliza cuando usamos print para mostrar nuestro objeto
o cuando usamos la función str(obj) para crear una cadena a partir de
nuestro objeto.

__cmp__(self, otro)

Método llamado cuando se utilizan los operadores de comparación
para comprobar si nuestro objeto es menor, mayor o igual al objeto
pasado como parámetro. Debe devolver un número negativo si nuestro
objeto es menor, cero si son iguales, y un número positivo si nuestro
objeto es mayor. Si este método no está definido y se intenta com-
parar el objeto mediante los operadores <, <=, > o >= se lanzará una
excepción. Si se utilizan los operadores == o != para comprobar si dos
objetos son iguales, se comprueba si son el mismo objeto (si tienen el
mismo id).

__len__(self)

Método llamado para comprobar la longitud del objeto. Se utiliza, por
ejemplo, cuando se llama a la función len(obj) sobre nuestro objeto.

Python para todos

50

Como es de suponer, el método debe devolver el número la longitud
del objeto.

Existen bastantes más métodos especiales, que permite entre otras
cosas utilizar el mecanismo de slicing sobre nuestro objeto, utilizar
los operadores aritméticos o usar la sintaxis de diccionarios, pero un
estudio exhaustivo de todos los métodos queda fuera del propósito del
capítulo.

51

Revisitando
Objetos

En los capítulos dedicados a los tipos simples y las colecciones veíamos
por primera vez algunos de los objetos del lenguaje Python: números,
booleanos, cadenas de texto, diccionarios, listas y tuplas.

Ahora que sabemos qué son las clases, los objetos, las funciones, y los
métodos es el momento de revisitar estos objetos para descubrir su
verdadero potencial.

Veremos a continuación algunos métodos útiles de estos objetos. Evi-
dentemente, no es necesario memorizarlos, pero si, al menos, recordar
que existen para cuando sean necesarios.

Diccionarios
D.has_key(k)

Comprueba si el diccionario tiene la clave k. Es equivalente a la sin-
taxis k in D.

D.items()

Devuelve una lista de tuplas con pares clave-valor.

D.keys()

Devuelve una lista de las claves del diccionario.

D.pop(k[, d])

Borra la clave k del diccionario y devuelve su valor. Si no se encuentra
dicha clave se devuelve d si se especificó el parámetro o bien se lanza

Python para todos

52

una excepción.

D.values()

Devuelve una lista de los valores del diccionario.

Cadenas
S.count(sub[, start[, end]])

Devuelve el número de veces que se encuentra sub en la cadena. Los
parámetros opcionales start y end definen una subcadena en la que
buscar.

S.find(sub[, start[, end]])

Devuelve la posición en la que se encontró por primera vez sub en la
cadena o -1 si no se encontró.

S.join(sequence)

Devuelve una cadena resultante de concatenar las cadenas de la se-
cuencia seq separadas por la cadena sobre la que se llama el método.

S.partition(sep)

Busca el separador sep en la cadena y devuelve una tupla con la sub-
cadena hasta dicho separador, el separador en si, y la subcadena del
separador hasta el final de la cadena. Si no se encuentra el separador, la
tupla contendrá la cadena en si y dos cadenas vacías.

S.replace(old, new[, count])

Devuelve una cadena en la que se han reemplazado todas las ocurren-
cias de la cadena old por la cadena new. Si se especifica el parámetro
count, este indica el número máximo de ocurrencias a reemplazar.

S.split([sep [,maxsplit]])

Devuelve una lista conteniendo las subcadenas en las que se divide
nuestra cadena al dividirlas por el delimitador sep. En el caso de que
no se especifique sep, se usan espacios. Si se especifica maxsplit, este
indica el número máximo de particiones a realizar.

Listas
L.append(object)

Revisitando objetos

53

Añade un objeto al final de la lista.

L.count(value)

Devuelve el número de veces que se encontró value en la lista.

L.extend(iterable)

Añade los elementos del iterable a la lista.

L.index(value[, start[, stop]])

Devuelve la posición en la que se encontró la primera ocurrencia de
value. Si se especifican, start y stop definen las posiciones de inicio y
fin de una sublista en la que buscar.

L.insert(index, object)

Inserta el objeto object en la posición index.

L.pop([index])

Devuelve el valor en la posición index y lo elimina de la lista. Si no se
especifica la posición, se utiliza el último elemento de la lista.

L.remove(value)

Eliminar la primera ocurrencia de value en la lista.

L.reverse()

Invierte la lista. Esta función trabaja sobre la propia lista desde la que
se invoca el método, no sobre una copia.

L.sort(cmp=None, key=None, reverse=False)

Ordena la lista. Si se especifica cmp, este debe ser una función que tome
como parámetro dos valores x e y de la lista y devuelva -1 si x es menor
que y, 0 si son iguales y 1 si x es mayor que y.

El parámetro reverse es un booleano que indica si se debe ordenar
la lista de forma inversa, lo que sería equivalente a llamar primero a
L.sort() y después a L.reverse().

Por último, si se especifica, el parámetro key debe ser una función que
tome un elemento de la lista y devuelva una clave a utilizar a la hora de
comparar, en lugar del elemento en si.

54

Programación
funcional

La programación funcional es un paradigma en el que la programa-
ción se basa casi en su totalidad en funciones, entendiendo el concepto
de función según su definición matemática, y no como los simples
subprogramas de los lenguajes imperativos que hemos visto hasta
ahora.

En los lenguajes funcionales puros un programa consiste exclusiva-
mente en la aplicación de distintas funciones a un valor de entrada
para obtener un valor de salida.

Python, sin ser un lenguaje puramente funcional incluye varias caracte-
rísticas tomadas de los lenguajes funcionales como son las funciones de
orden superior o las funciones lambda (funciones anónimas).

Funciones de orden superior
El concepto de funciones de orden superior se refiere al uso de fun-
ciones como si de un valor cualquiera se tratara, posibilitando el pasar
funciones como parámetros de otras funciones o devolver funciones
como valor de retorno.

Esto es posible porque, como hemos insistido ya en varias ocasiones,
en Python todo son objetos. Y las funciones no son una excepción.

Veamos un pequeño ejemplo

def saludar(lang):
 def saludar_es():

Programación funcional

55

 print “Hola”

 def saludar_en():
 print “Hi”

 def saludar_fr():
 print “Salut”

 lang_func = {“es”: saludar_es,
 “en”: saludar_en,
 “fr”: saludar_fr}
 return lang_func[lang]

f = saludar(“es”)
f()

Como podemos observar lo primero que hacemos en nuestro pequeño
programa es llamar a la función saludar con un parámetro “es”. En la
función saludar se definen varias funciones: saludar_es, saludar_en y
saludar_fr y a continuación se crea un diccionario que tiene como cla-
ves cadenas de texto que identifican a cada lenguaje, y como valores las
funciones. El valor de retorno de la función es una de estas funciones.
La función a devolver viene determinada por el valor del parámetro
lang que se pasó como argumento de saludar.

Como el valor de retorno de saludar es una función, como hemos
visto, esto quiere decir que f es una variable que contiene una función.
Podemos entonces llamar a la función a la que se refiere f de la forma
en que llamaríamos a cualquier otra función, añadiendo unos parénte-
sis y, de forma opcional, una serie de parámetros entre los paréntesis.

Esto se podría acortar, ya que no es necesario almacenar la función que
nos pasan como valor de retorno en una variable para poder llamarla:

>>> saludar(“en”)()
Hi
>>> saludar(“fr”)()
Salut

En este caso el primer par de paréntesis indica los parámetros de la
función saludar, y el segundo par, los de la función devuelta por salu-
dar.

Python para todos

56

Iteraciones de orden superior so-
bre listas

Una de las cosas más interesantes que podemos hacer con nuestras
funciones de orden superior es pasarlas como argumentos de las fun-
ciones map, filter y reduce. Estas funciones nos permiten sustituir los
bucles típicos de los lenguajes imperativos mediante construcciones
equivalentes.

map(function, sequence[, sequence, ...])
La función map aplica una función a cada elemento de una secuencia y
devuelve una lista con el resultado de aplicar la función a cada elemen-
to. Si se pasan como parámetros n secuencias, la función tendrá que
aceptar n argumentos. Si alguna de las secuencias es más pequeña que
las demás, el valor que le llega a la función function para posiciones
mayores que el tamaño de dicha secuencia será None.

A continuación podemos ver un ejemplo en el que se utiliza map para
elevar al cuadrado todos los elementos de una lista:

def cuadrado(n):
 return n ** 2

l = [1, 2, 3]
l2 = map(cuadrado, l)

filter(function, sequence)
La funcion filter verifica que los elementos de una secuencia cum-
plan una determinada condición, devolviendo una secuencia con los
elementos que cumplen esa condición. Es decir, para cada elemento de
sequence se aplica la función function; si el resultado es True se añade
a la lista y en caso contrario se descarta.

A continuación podemos ver un ejemplo en el que se utiliza filter
para conservar solo los números que son pares.

def es_par(n):
 return (n % 2.0 == 0)

l = [1, 2, 3]

Programación funcional

57

l2 = filter(es_par, l)

reduce(function, sequence[, initial])
La función reduce aplica una función a pares de elementos de una
secuencia hasta dejarla en un solo valor.

A continuación podemos ver un ejemplo en el que se utiliza reduce
para sumar todos los elementos de una lista.

def sumar(x, y):
 return x + y

l = [1, 2, 3]
l2 = reduce(sumar, l)

Funciones lambda
El operador lambda sirve para crear funciones anónimas en línea. Al ser
funciones anónimas, es decir, sin nombre, estas no podrán ser referen-
ciadas más tarde.

Las funciones lambda se construyen mediante el operador lambda, los
parámetros de la función separados por comas (atención, SIN parénte-
sis), dos puntos (:) y el código de la función.

Esta construcción podrían haber sido de utilidad en los ejemplos an-
teriores para reducir código. El programa que utilizamos para explicar
filter, por ejemplo, podría expresarse así:

l = [1, 2, 3]
l2 = filter(lambda n: n % 2.0 == 0, l)

Comparemoslo con la versión anterior:

def es_par(n):
 return (n % 2.0 == 0)

l = [1, 2, 3]
l2 = filter(es_par, l)

Las funciones lambda están restringidas por la sintaxis a una sola

Python para todos

58

expresión.

Comprensión de listas
En Python 3 map y filter se verán sustituidas por las list comprehen-
sions o comprensión de listas, característica tomada del lenguaje de
programación funcional Haskell y que está presente en Python desde
la versión 2.0.

La comprensión de listas es una construcción que permite crear listas
a partir de otras listas. Cada una de estas construcciones consta de una
expresión que determina cómo modificar el elemento de la lista origi-
nal, seguida de una o varias clausulas for y opcionalmente una o varias
clausulas if.

Veamos un ejemplo de cómo se podría utilizar la comprensión de listas
para elevar al cuadrado todos los elementos de una lista, como hicimos
en nuestro ejemplo de map.

l2 = [n ** 2 for n in l]

Esta expresión se leería como “para cada n en l haz n ** 2”. Como
vemos tenemos primero la expresión que modifica los valores de la lista
original (n ** 2), después el for, el nombre que vamos a utilizar para
referirnos al elemento actual de la lista original, el in, y la lista sobre la
que se itera.

El ejemplo que utilizamos para la función filter (conservar solo los
números que son pares) se podría expresar con comprensión de listas
así:

l2 = [n for n in l if n % 2.0 == 0]

Veamos por último un ejemplo de compresión de listas con varias
clausulas for:

l = [0, 1, 2, 3]
m = [“a”, “b”]
n = [s * v for s in m
 for v in l

Programación funcional

59

 if v > 0]

Esta construcción sería equivalente a una serie de for-in anidados:

l = [0, 1, 2, 3]
m = [“a”, “b”]
n = []

for s in m:
 for v in l:
 if v > 0:
 n.append(s* v)

Generadores
Las expresiones generadoras funcionan de forma muy similar a la
comprensión de listas. De hecho su sintaxis es exactamente igual, a
excepción de que se utilizan paréntesis en lugar de corchetes:

l2 = (n ** 2 for n in l)

Sin embargo las expresiones generadoras se diferencian de la compren-
sión de listas en que no se devuelve una lista, sino un generador.

>>> l2 = [n ** 2 for n in l]
>>> l2
[0, 1, 4, 9]
>>> l2 = (n ** 2 for n in l)
>>> l2
<generator object at 0×00E33210>

Un generador es una clase especial de función que genera valores sobre
los que iterar. Para devolver el siguiente valor sobre el que iterar se
utiliza la palabra clave yield en lugar de return. Veamos por ejemplo
un generador que devuelva números de n a m con un salto s.

def mi_generador(n, m, s):
 while(n <= m):
 yield n
 n += s

>>> x = mi_generador(0, 5, 1)
>>> x
<generator object at 0×00E25710>

Python para todos

60

El generador se puede utilizar en cualquier lugar donde se necesite un
objeto iterable. Por ejemplo en un for-in:

for n in mi_generador(0, 5, 1):
 print n

Como no estamos creando una lista completa en memoria, sino gene-
rando un solo valor cada vez que se necesita, en situaciones en las que
no sea necesario tener la lista completa el uso de generadores puede
suponer una gran diferencia de memoria. En todo caso siempre es po-
sible crear una lista a partir de un generador mediante la función list:

lista = list(mi_generador)

Decoradores
Un decorador no es es mas que una función que recibe una función
como parámetro y devuelve otra función como resultado. Por ejem-
plo podríamos querer añadir la funcionalidad de que se imprimiera el
nombre de la función llamada por motivos de depuración:

def mi_decorador(funcion):
 def nueva(*args):
 print “Llamada a la funcion”, funcion.__name__
 retorno = funcion(*args)
 return retorno
 return nueva

Como vemos el código de la función mi_decorador no hace más que
crear una nueva función y devolverla. Esta nueva función imprime el
nombre de la función a la que “decoramos”, ejecuta el código de dicha
función, y devuelve su valor de retorno. Es decir, que si llamáramos
a la nueva función que nos devuelve mi_decorador, el resultado sería
el mismo que el de llamar directamente a la función que le pasamos
como parámetro, exceptuando el que se imprimiría además el nombre
de la función.

Supongamos como ejemplo una función imp que no hace otra cosa que
mostrar en pantalla la cadena pasada como parámetro.

>>> imp(“hola”)

Programación funcional

61

hola
>>> mi_decorador(imp)(“hola”)
Llamada a la función imp
hola

La sintaxis para llamar a la función que nos devuelve mi_decorador no
es muy clara, aunque si lo estudiamos detenidamente veremos que no
tiene mayor complicación. Primero se llama a la función que decora
con la función a decorar: mi_decorador(imp); y una vez obtenida la
función ya decorada se la puede llamar pasando el mismo parámetro
que se pasó anteriormente: mi_decorador(imp)(“hola”)

Esto se podría expresar más claramente precediendo la definición de la
función que queremos decorar con el signo @ seguido del nombre de la
función decoradora:

@mi_decorador
def imp(s):
 print s

De esta forma cada vez que se llame a imp se estará llamando realmen-
te a la versión decorada. Python incorpora esta sintaxis desde la versión
2.4 en adelante.

Si quisiéramos aplicar más de un decorador bastaría añadir una nueva
línea con el nuevo decorador.

@otro_decorador
@mi_decorador
def imp(s):
 print s

Es importante advertir que los decoradores se ejecutarán de abajo a
arriba. Es decir, en este ejemplo primero se ejecutaría mi_decorador y
después otro_decorador.

62

Excepciones

Las excepciones son errores detectados por Python durante la eje-
cución del programa. Cuando el intérprete se encuentra con una
situación excepcional, como el intentar dividir un número entre 0 o
el intentar acceder a un archivo que no existe, este genera o lanza una
excepción, informando al usuario de que existe algún problema.

Si la excepción no se captura el flujo de ejecución se interrumpe y se
muestra la información asociada a la excepción en la consola de forma
que el programador pueda solucionar el problema.

Veamos un pequeño programa que lanzaría una excepción al intentar
dividir 1 entre 0.

def division(a, b):
 return a / b

def calcular():
 division(1, 0)

calcular()

Si lo ejecutamos obtendremos el siguiente mensaje de error:

$ python ejemplo.py
Traceback (most recent call last):
File “ejemplo.py”, line 7, in
calcular()
File “ejemplo.py”, line 5, in calcular
division(1, 0)
File “ejemplo.py”, line 2, in division
a / b
ZeroDivisionError: integer division or modulo by zero

Lo primero que se muestra es el trazado de pila o traceback, que con-
siste en una lista con las llamadas que provocaron la excepción. Como

Excepciones

63

vemos en el trazado de pila, el error estuvo causado por la llamada a
calcular() de la línea 7, que a su vez llama a division(1, 0) en la
línea 5 y en última instancia por la ejecución de la sentencia a / b de
la línea 2 de division.

A continuación vemos el tipo de la excepción, ZeroDivionError, junto
a una descripción del error: “integer division or modulo by zero” (mó-
dulo o división entera entre cero).

En Python se utiliza una construcción try-except para capturar y
tratar las excepciones. El bloque try (intentar) define el fragmento de
código en el que creemos que podría producirse una excepción. El blo-
que except (excepción) permite indicar el tratamiento que se llevará a
cabo de producirse dicha excepción. Muchas veces nuestro tratamiento
de la excepción consistirá simplemente en imprimir un mensaje más
amigable para el usuario, otras veces nos interesará registrar los errores
y de vez en cuando podremos establecer una estrategia de resolución
del problema.

En el siguiente ejemplo intentamos crear un objeto f de tipo fichero.
De no existir el archivo pasado como parámetro, se lanza una excep-
ción de tipo IOError, que capturamos gracias a nuestro try-except.

try:
 f = file(“archivo.txt”)
except:
 print “El archivo no existe”

Python permite utilizar varios except para un solo bloque try, de
forma que podamos dar un tratamiento distinto a la excepción de-
pendiendo del tipo de excepción de la que se trate. Esto es una buena
práctica, y es tan sencillo como indicar el nombre del tipo a continua-
ción del except.

try:
 num = int(“3a”)
 print no_existe
except NameError:
 print “La variable no existe”
except ValueError:
 print “El valor no es un numero”

Python para todos

64

Cuando se lanza una excepción en el bloque try, se busca en cada una
de las clausulas except un manejador adecuado para el tipo de error
que se produjo. En caso de que no se encuentre, se propaga la excep-
ción.

Además podemos hacer que un mismo except sirva para tratar más
de una excepción usando una tupla para listar los tipos de error que
queremos que trate el bloque:

try:
 num = int(“3a”)
 print no_existe
except (NameError, ValueError):
 print “Ocurrio un error”

La construcción try-except puede contar además con una clausula
else, que define un fragmento de código a ejecutar sólo si no se ha
producido ninguna excepción en el try.

try:
 num = 33
except:
 print “Hubo un error!”
else:
 print “Todo esta bien”

También existe una clausula finally que se ejecuta siempre, se pro-
duzca o no una excepción. Esta clausula se suele utilizar, entre otras
cosas, para tareas de limpieza.

try:
 z = x / y
except ZeroDivisionError:
 print “Division por cero”
finally:
 print “Limpiando”

También es interesante comentar que como programadores podemos
crear y lanzar nuestras propias excepciones. Basta crear una clase que
herede de Exception o cualquiera de sus hijas y lanzarla con raise.

class MiError(Exception):
 def __init__(self, valor):
 self.valor = valor

Excepciones

65

 def __str__(self):
 return “Error “ + str(self.valor)

try:
 if resultado > 20:
 raise MiError(33)
except MiError, e:
 print e

Por último, a continuación se listan a modo de referencia las excepcio-
nes disponibles por defecto, así como la clase de la que deriva cada una
de ellas entre paréntesis.

BaseException: Clase de la que heredan todas las excepciones.

Exception(BaseException): Super clase de todas las excepciones que
no sean de salida.

GeneratorExit(Exception): Se pide que se salga de un generador.

StandarError(Exception): Clase base para todas las excepciones que
no tengan que ver con salir del intérprete.

ArithmeticError(StandardError): Clase base para los errores aritmé-
ticos.

FloatingPointError(ArithmeticError): Error en una operación de
coma flotante.

OverflowError(ArithmeticError): Resultado demasiado grande para
poder representarse.

ZeroDivisionError(ArithmeticError): Lanzada cuando el segundo
argumento de una operación de división o módulo era 0.

AssertionError(StandardError): Falló la condición de un estamento
assert.

AttributeError(StandardError): No se encontró el atributo.

Python para todos

66

EOFError(StandardError): Se intentó leer más allá del final de fichero.

EnvironmentError(StandardError): Clase padre de los errores relacio-
nados con la entrada/salida.

IOError(EnvironmentError): Error en una operación de entrada/salida.

OSError(EnvironmentError): Error en una llamada a sistema.

WindowsError(OSError): Error en una llamada a sistema en Windows.

ImportError(StandardError): No se encuentra el módulo o el elemen-
to del módulo que se quería importar.

LookupError(StandardError): Clase padre de los errores de acceso.

IndexError(LookupError): El índice de la secuencia está fuera del
rango posible.

KeyError(LookupError): La clave no existe.

MemoryError(StandardError): No queda memoria suficiente.

NameError(StandardError): No se encontró ningún elemento con ese
nombre.

UnboundLocalError(NameError): El nombre no está asociado a ninguna
variable.

ReferenceError(StandardError): El objeto no tiene ninguna referen-
cia fuerte apuntando hacia él.

RuntimeError(StandardError): Error en tiempo de ejecución no espe-
cificado.

NotImplementedError(RuntimeError): Ese método o función no está
implementado.

SyntaxError(StandardError): Clase padre para los errores sintácticos.

Excepciones

67

IndentationError(SyntaxError): Error en la indentación del archivo.

TabError(IndentationError): Error debido a la mezcla de espacios y
tabuladores.

SystemError(StandardError): Error interno del intérprete.

TypeError(StandardError): Tipo de argumento no apropiado.

ValueError(StandardError): Valor del argumento no apropiado.

UnicodeError(ValueError): Clase padre para los errores relacionados
con unicode.

UnicodeDecodeError(UnicodeError): Error de decodificación unicode.

UnicodeEncodeError(UnicodeError): Error de codificación unicode.

UnicodeTranslateError(UnicodeError): Error de traducción unicode.

StopIteration(Exception): Se utiliza para indicar el final del iterador.

Warning(Exception): Clase padre para los avisos.

DeprecationWarning(Warning): Clase padre para avisos sobre caracte-
rísticas obsoletas.

FutureWarning(Warning): Aviso. La semántica de la construcción cam-
biará en un futuro.

ImportWarning(Warning): Aviso sobre posibles errores a la hora de
importar.

PendingDeprecationWarning(Warning): Aviso sobre características que
se marcarán como obsoletas en un futuro próximo.

RuntimeWarning(Warning): Aviso sobre comportmaientos dudosos en
tiempo de ejecución.

Python para todos

68

SyntaxWarning(Warning): Aviso sobre sintaxis dudosa.

UnicodeWarning(Warning): Aviso sobre problemas relacionados con
Unicode, sobre todo con problemas de conversión.

UserWarning(Warning): Clase padre para avisos creados por el progra-
mador.

KeyboardInterrupt(BaseException): El programa fué interrumpido
por el usuario.

SystemExit(BaseException): Petición del intérprete para terminar la
ejecución.

69

Módulos y
Paquetes

Módulos
Para facilitar el mantenimiento y la lectura los programas demasiado
largos pueden dividirse en módulos, agrupando elementos relaciona-
dos. Los módulos son entidades que permiten una organización y divi-
sión lógica de nuestro código. Los ficheros son su contrapartida física:
cada archivo Python almacenado en disco equivale a un módulo.

Vamos a crear nuestro primer módulo entonces creando un pequeño
archivo modulo.py con el siguiente contenido:

def mi_funcion():
 print “una funcion”

class MiClase:
 def __init__(self):
 print “una clase”

print “un modulo”

Si quisiéramos utilizar la funcionalidad definida en este módulo en
nuestro programa tendríamos que importarlo. Para importar un mó-
dulo se utiliza la palabra clave import seguida del nombre del módulo,
que consiste en el nombre del archivo menos la extensión. Como ejem-
plo, creemos un archivo programa.py en el mismo directorio en el que
guardamos el archivo del módulo (esto es importante, porque si no se
encuentra en el mismo directorio Python no podrá encontrarlo), con el
siguiente contenido:

import modulo

Python para todos

70

modulo.mi_funcion()

El import no solo hace que tengamos disponible todo lo definido
dentro del módulo, sino que también ejecuta el código del módulo. Por
esta razón nuestro programa, además de imprimir el texto “una fun-
cion” al llamar a mi_funcion, también imprimiría el texto “un modulo”,
debido al print del módulo importado. No se imprimiría, no obstante,
el texto “una clase”, ya que lo que se hizo en el módulo fue tan solo
definir de la clase, no instanciarla.

La clausula import también permite importar varios módulos en la
misma línea. En el siguiente ejemplo podemos ver cómo se importa
con una sola clausula import los módulos de la distribución por defecto
de Python os, que engloba funcionalidad relativa al sistema operativo;
sys, con funcionalidad relacionada con el propio intérprete de Python
y time, en el que se almacenan funciones para manipular fechas y
horas.

import os, sys, time

print time.asctime()

Sin duda os habréis fijado en este y el anterior ejemplo en un detalle
importante, y es que, como vemos, es necesario preceder el nombre de
los objetos que importamos de un módulo con el nombre del módulo
al que pertenecen, o lo que es lo mismo, el espacio de nombres en el
que se encuentran. Esto permite que no sobreescribamos accidental-
mente algún otro objeto que tuviera el mismo nombre al importar otro
módulo.

Sin embargo es posible utilizar la construcción from-import para
ahorrarnos el tener que indicar el nombre del módulo antes del objeto
que nos interesa. De esta forma se importa el objeto o los objetos que
indiquemos al espacio de nombres actual.

from time import asctime

print asctime()

Módulos y paquetes

71

Aunque se considera una mala práctica, también es posible importar
todos los nombres del módulo al espacio de nombres actual usando el
caracter *:

from time import *

Ahora bien, recordareis que a la hora de crear nuestro primer módulo
insistí en que lo guardarais en el mismo directorio en el que se en-
contraba el programa que lo importaba. Entonces, ¿cómo podemos
importar los módulos os, sys o time si no se encuentran los archivos
os.py, sys.py y time.py en el mismo directorio?

A la hora de importar un módulo Python recorre todos los directorios
indicados en la variable de entorno PYTHONPATH en busca de un archivo
con el nombre adecuado. El valor de la variable PYTHONPATH se puede
consultar desde Python mediante sys.path

>>> import sys
>>> sys.path

De esta forma para que nuestro módulo estuviera disponible para
todos los programas del sistema bastaría con que lo copiáramos a uno
de los directorios indicados en PYTHONPATH.

En el caso de que Python no encontrara ningún módulo con el nom-
bre especificado, se lanzaría una excepción de tipo ImportError.

Por último es interesante comentar que en Python los módulos
también son objetos; de tipo module en concreto. Por supuesto esto
significa que pueden tener atributos y métodos. Uno de sus atribu-
tos, __name__, se utiliza a menudo para incluir código ejecutable en un
módulo pero que este sólo se ejecute si se llama al módulo como pro-
grama, y no al importarlo. Para lograr esto basta saber que cuando se
ejecuta el módulo directamente __name__ tiene como valor “__main__”,
mientras que cuando se importa, el valor de __name__ es el nombre del
módulo:

print “Se muestra siempre”

if __name__ == “__main__”:
 print “Se muestra si no es importacion”

Python para todos

72

Otro atributo interesante es __doc__, que, como en el caso de fun-
ciones y clases, sirve a modo de documentación del objeto (docstring
o cadena de documentación). Su valor es el de la primera línea del
cuerpo del módulo, en el caso de que esta sea una cadena de texto; en
caso contrario valdrá None.

Paquetes
Si los módulos sirven para organizar el código, los paquetes sirven para
organizar los módulos. Los paquetes son tipos especiales de módulos
(ambos son de tipo module) que permiten agrupar módulos relacio-
nados. Mientras los módulos se corresponden a nivel físico con los
archivos, los paquetes se representan mediante directorios.

En una aplicación cualquiera podríamos tener, por ejemplo, un paque-
te iu para la interfaz o un paquete bbdd para la persistencia a base de
datos.

Para hacer que Python trate a un directorio como un paquete es nece-
sario crear un archivo __init__.py en dicha carpeta. En este archivo se
pueden definir elementos que pertenezcan a dicho paquete, como una
constante DRIVER para el paquete bbdd, aunque habitualmente se trata-
rá de un archivo vacío. Para hacer que un cierto módulo se encuentre
dentro de un paquete, basta con copiar el archivo que define el módulo
al directorio del paquete.

Como los modulos, para importar paquetes también se utiliza import
y from-import y el caracter . para separar paquetes, subpaquetes y
módulos.

import paq.subpaq.modulo

paq.subpaq.modulo.func()

73

Entrada/Salida Y
Ficheros

Nuestros programas serían de muy poca utilidad si no fueran capaces
de interaccionar con el usuario. En capítulos anteriores vimos, de pasa-
da, el uso de la palabra clave print para mostrar mensajes en pantalla.

En esta lección, además de describir más detalladamente del uso de
print para mostrar mensajes al usuario, aprenderemos a utilizar las
funciones input y raw_input para pedir información, así como los
argumentos de línea de comandos y, por último, la entrada/salida de
ficheros.

Entrada estándar
La forma más sencilla de obtener información por parte del usuario
es mediante la función raw_input. Esta función toma como paráme-
tro una cadena a usar como prompt (es decir, como texto a mostrar al
usuario pidiendo la entrada) y devuelve una cadena con los caracteres
introducidos por el usuario hasta que pulsó la tecla Enter. Veamos un
pequeño ejemplo:

nombre = raw_input(“Como te llamas? “)
print “Encantado, “ + nombre

Si necesitáramos un entero como entrada en lugar de una cadena, por
ejemplo, podríamos utilizar la función int para convertir la cadena a
entero, aunque sería conveniente tener en cuenta que puede lanzarse
una excepción si lo que introduce el usuario no es un número.

try:
 edad = raw_input(“Cuantos anyos tienes? “)

Python para todos

74

 dias = int(edad) * 365
 print “Has vivido “ + str(dias) + “ dias”
except ValueError:
 print “Eso no es un numero”

La función input es un poco más complicada. Lo que hace esta fun-
ción es utilizar raw_input para leer una cadena de la entrada estándar,
y después pasa a evaluarla como si de código Python se tratara; por lo
tanto input debería tratarse con sumo cuidado.

Parámetros de línea de comando
Además del uso de input y raw_input el programador Python cuen-
ta con otros métodos para obtener datos del usuario. Uno de ellos es
el uso de parámetros a la hora de llamar al programa en la línea de
comandos. Por ejemplo:

python editor.py hola.txt

En este caso hola.txt sería el parámetro, al que se puede acceder a
través de la lista sys.argv, aunque, como es de suponer, antes de poder
utilizar dicha variable debemos importar el módulo sys. sys.argv[0]
contiene siempre el nombre del programa tal como lo ha ejecutado el
usuario, sys.argv[1], si existe, sería el primer parámetro; sys.argv[2]
el segundo, y así sucesivamente.

import sys

if(len(sys.argv) > 1):
 print “Abriendo “ + sys.argv[1]
else:
 print “Debes indicar el nombre del archivo”

Existen módulos, como optparse, que facilitan el trabajo con los argu-
mentos de la línea de comandos, pero explicar su uso queda fuera del
objetivo de este capítulo.

Salida estándar
La forma más sencilla de mostrar algo en la salida estándar es median-
te el uso de la sentencia print, como hemos visto multitud de veces en

Entrada/Salida. Ficheros

75

ejemplos anteriores. En su forma más básica a la palabra clave print le
sigue una cadena, que se mostrará en la salida estándar al ejecutarse el
estamento.

>>> print “Hola mundo”
Hola mundo

Después de imprimir la cadena pasada como parámetro el puntero se
sitúa en la siguiente línea de la pantalla, por lo que el print de Python
funciona igual que el println de Java.

En algunas funciones equivalentes de otros lenguajes de programación
es necesario añadir un carácter de nueva línea para indicar explícita-
mente que queremos pasar a la siguiente línea. Este es el caso de la
función printf de C o la propia función print de Java.

Ya explicamos el uso de estos caracteres especiales durante la explica-
ción del tipo cadena en el capítulo sobre los tipos básicos de Python.
La siguiente sentencia, por ejemplo, imprimiría la palabra “Hola”,
seguida de un renglón vacío (dos caracteres de nueva línea, ‘\n’), y
a continuación la palabra “mundo” indentada (un carácter tabulador,
‘\t’).

print “Hola\n\n\tmundo”

Para que la siguiente impresión se realizara en la misma línea tendría-
mos que colocar una coma al final de la sentencia. Comparemos el
resultado de este código:

>>> for i in range(3):
>>> ...print i,
0 1 2

Con el de este otro, en el que no utiliza una coma al final de la senten-
cia:

>>> for i in range(3):
>>> ...print i
0
1
2

Python para todos

76

Este mecanismo de colocar una coma al final de la sentencia funcio-
na debido a que es el símbolo que se utiliza para separar cadenas que
queramos imprimir en la misma línea.

>>> print “Hola”, “mundo”
Hola mundo

Esto se diferencia del uso del operador + para concatenar las cadenas
en que al utilizar las comas print introduce automáticamente un espa-
cio para separar cada una de las cadenas. Este no es el caso al utilizar
el operador +, ya que lo que le llega a print es un solo argumento: una
cadena ya concatenada.

>>> print “Hola” + “mundo”
Holamundo

Además, al utilizar el operador + tendríamos que convertir antes cada
argumento en una cadena de no serlo ya, ya que no es posible concate-
nar cadenas y otros tipos, mientras que al usar el primer método no es
necesaria la conversión.

>>> print “Cuesta”, 3, “euros”
Cuesta 3 euros
>>> print “Cuesta” + 3 + “euros”
<type ‘exceptions.TypeError’>: cannot concatenate ‘str’ and
‘int’ objects

La sentencia print, o más bien las cadenas que imprime, permiten
también utilizar técnicas avanzadas de formateo, de forma similar al
sprintf de C. Veamos un ejemplo bastante simple:

print “Hola %s” % “mundo”
print “%s %s” % (“Hola”, “mundo”)

Lo que hace la primera línea es introducir los valores a la derecha del
símbolo % (la cadena “mundo”) en las posiciones indicadas por los espe-
cificadores de conversión de la cadena a la izquierda del símbolo %, tras
convertirlos al tipo adecuado.

En la segunda línea, vemos cómo se puede pasar más de un valor a
sustituir, por medio de una tupla.

Entrada/Salida. Ficheros

77

En este ejemplo sólo tenemos un especificador de conversión: %s.

Los especificadores más sencillos están formados por el símbolo %
seguido de una letra que indica el tipo con el que formatear el valor
Por ejemplo:

Especificador Formato
%s Cadena
%d Entero
%o Octal
%x Hexadecimal
%f Real

Se puede introducir un número entre el % y el carácter que indica el
tipo al que formatear, indicando el número mínimo de caracteres que
queremos que ocupe la cadena. Si el tamaño de la cadena resultante
es menor que este número, se añadirán espacios a la izquierda de la
cadena. En el caso de que el número sea negativo, ocurrirá exactamente
lo mismo, sólo que los espacios se añadirán a la derecha de la cadena.

>>> print “%10s mundo” % “Hola”
______Hola mundo
>>> print “%-10s mundo” % “Hola”
Hola_______mundo

En el caso de los reales es posible indicar la precisión a utilizar prece-
diendo la f de un punto seguido del número de decimales que quere-
mos mostrar:

>>> from math import pi
>>> print “%.4f” % pi
3.1416

La misma sintaxis se puede utilizar para indicar el número de caracte-
res de la cadena que queremos mostrar

>>> print “%.4s” % “hola mundo”
hola

Python para todos

78

Archivos

Los ficheros en Python son objetos de tipo file creados mediante la
función open (abrir). Esta función toma como parámetros una cadena
con la ruta al fichero a abrir, que puede ser relativa o absoluta; una
cadena opcional indicando el modo de acceso (si no se especifica se
accede en modo lectura) y, por último, un entero opcional para especi-
ficar un tamaño de buffer distinto del utilizado por defecto.

El modo de acceso puede ser cualquier combinación lógica de los
siguientes modos:

‘r’•	 : read, lectura. Abre el archivo en modo lectura. El archivo tiene
que existir previamente, en caso contrario se lanzará una excepción
de tipo IOError.
‘w’•	 : write, escritura. Abre el archivo en modo escritura. Si el archi-
vo no existe se crea. Si existe, sobreescribe el contenido.
‘a’•	 : append, añadir. Abre el archivo en modo escritura. Se diferen-
cia del modo ‘w’ en que en este caso no se sobreescribe el conteni-
do del archivo, sino que se comienza a escribir al final del archivo.
‘b’•	 : binary, binario.
‘+’•	 : permite lectura y escritura simultáneas.
‘U’•	 : universal newline, saltos de línea universales. Permite trabajar
con archivos que tengan un formato para los saltos de línea que no
coincide con el de la plataforma actual (en Windows se utiliza el
caracter CR LF, en Unix LF y en Mac OS CR).

f = open(“archivo.txt”, “w”)

Tras crear el objeto que representa nuestro archivo mediante la función
open podremos realizar las operaciones de lectura/escritura pertinen-
tes utilizando los métodos del objeto que veremos en las siguientes
secciones.

Una vez terminemos de trabajar con el archivo debemos cerrarlo utili-
zando el método close.

Lectura de archivos

Entrada/Salida. Ficheros

79

Para la lectura de archivos se utilizan los métodos read, readline y
realines.

El método read devuelve una cadena con el contenido del archivo o
bien el contenido de los primeros n bytes, si se especifica el tamaño
máximo a leer.

completo = f.read()

parte = f2.read(512)

El método readline sirve para leer las líneas del fichero una por una.
Es decir, cada vez que se llama a este método, se devuelve el conteni-
do del archivo desde el puntero hasta que se encuentra un carácter de
nueva línea, incluyendo este carácter.

while True:
 linea = f.readline()
 if not linea: break
 print line

Por último, readlines, funciona leyendo todas las líneas del archivo y
devolviendo una lista con las líneas leídas.

Escritura de archivos
Para la escritura de archivos se utilizan los método write y writelines.
Mientras el primero funciona escribiendo en el archivo una cadena de
texto que toma como parámetro, el segundo toma como parámetro una
lista de cadenas de texto indicando las líneas que queremos escribir en
el fichero.

Mover el puntero de lectura/escritura
Hay situaciones en las que nos puede interesar mover el puntero de
lectura/escritura a una posición determinada del archivo. Por ejemplo
si queremos empezar a escribir en una posición determinada y no al
final o al principio del archivo.

Para esto se utiliza el método seek que toma como parámetro un nú-

Python para todos

80

mero positivo o negativo a utilizar como desplazamiento. También es
posible utilizar un segundo parámetro para indicar desde dónde quere-
mos que se haga el desplazamiento: 0 indicará que el desplazamiento
se refiere al principio del fichero (comportamiento por defecto), 1 se
refiere a la posición actual, y 2, al final del fichero.

Para determinar la posición en la que se encuentra actualmente el
puntero se utiliza el método tell(), que devuelve un entero indicando
la distancia en bytes desde el principio del fichero.

81

Expresiones
Regulares

Las expresiones regulares, también llamadas regex o regexp, consisten
en patrones que describen conjuntos de cadenas de caracteres.

Algo parecido sería escribir en la línea de comandos de Windows

dir *.exe

‘*.exe’ sería una “expresión regular” que describiría todas las cadenas
de caracteres que empiezan con cualquier cosa seguida de ‘.exe’, es
decir, todos los archivos exe.

El trabajo con expresiones regulares en Python se realiza mediante el
módulo re, que data de Python 1.5 y que proporciona una sintaxis para
la creación de patrones similar a la de Perl. En Python 1.6 el módulo
se reescribió para dotarlo de soporte de cadenas unicode y mejorar su
rendimiento.

El módulo re contiene funciones para buscar patrones dentro de una
cadena (search), comprobar si una cadena se ajusta a un determinado
criterio descrito mediante un patrón (match), dividir la cadena usando
las ocurrencias del patrón como puntos de ruptura (split) o para sus-
tituir todas las ocurrencias del patrón por otra cadena (sub). Veremos
estas funciones y alguna más en la próxima sección, pero por ahora,
aprendamos algo más sobre la sintaxis de las expresiones regulares.

Patrones
La expresión regular más sencilla consiste en una cadena simple, que

Python para todos

82

describe un conjunto compuesto tan solo por esa misma cadena. Por
ejemplo, veamos cómo la cadena “python” coincide con la expresión
regular “python” usando la función match:

import re

if re.match(“python”, “python”):
 print “cierto”

Si quisiéramos comprobar si la cadena es “python”, “jython”,
“cython” o cualquier otra cosa que termine en “ython”, podríamos
utilizar el carácter comodín, el punto ‘.’:

re.match(“.ython”, “python”)
re.match(“.ython”, “jython”)

La expresión regular “.ython” describiría a todas las cadenas que con-
sistan en un carácter cualquiera, menos el de nueva línea, seguido de
“ython”. Un carácter cualquiera y solo uno. No cero, ni dos, ni tres.

En el caso de que necesitáramos el carácter ‘.’ en la expresión regular,
o cualquier otro de los caracteres especiales que veremos a continua-
ción, tendríamos que escaparlo utilizando la barra invertida.

Para comprobar si la cadena consiste en 3 caracteres seguidos de un
punto, por ejemplo, podríamos utilizar lo siguiente:

re.match(“...\.”, “abc.”)

Si necesitáramos una expresión que sólo resultara cierta para las cade-
nas “python”, “jython” y “cython” y ninguna otra, podríamos utilizar
el carácter ‘|’ para expresar alternativa escribiendo los tres subpatro-
nes completos:

re.match(“python|jython|cython”, “python”)

o bien tan solo la parte que pueda cambiar, encerrada entre paréntesis,
formando lo que se conoce como un grupo. Los grupos tienen una
gran importancia a la hora de trabajar con expresiones regulares y este
no es su único uso, como veremos en la siguiente sección.

Expresiones regulares

83

re.match(“(p|j|c)ython”, “python”)

Otra opción consistiría en encerrar los caracteres ‘p’, ‘j’ y ‘c’ entre
corchetes para formar una clase de caracteres, indicando que en esa po-
sición puede colocarse cualquiera de los caracteres de la clase.

re.match(“[pjc]ython”, “python”)

¿Y si quisiéramos comprobar si la cadena es “python0”, “python1”,
“python2”, ... , “python9”? En lugar de tener que encerrar los 10 dígitos
dentro de los corchetes podemos utilizar el guión, que sirve para indi-
car rangos. Por ejemplo a-d indicaría todas las letras minúsculas de la
‘a’ a la ‘d’; 0-9 serían todos los números de 0 a 9 inclusive.

re.match(“python[0-9]”, “python0”)

Si quisiéramos, por ejemplo, que el último carácter fuera o un dígito o
una letra simplemente se escribirían dentro de los corchetes todos los
criterios, uno detras de otro.

re.match(“python[0-9a-zA-Z]”, “pythonp”)

Es necesario advertir que dentro de las clases de caracteres los caracte-
res especiales no necesitan ser escapados. Para comprobar si la cadena
es “python.” o “python,”, entonces, escribiríamos:

re.match(“python[.,]”, “python.”)

y no

re.match(“python[\.,]”, “python.”)

ya que en este último caso estaríamos comprobando si la cadena es
“python.”, “python,” o “python\”.

Los conjuntos de caracteres también se pueden negar utilizando el
símbolo ‘^’. La expresión “python[^0-9a-z]”, por ejemplo, indicaría
que nos interesan las cadenas que comiencen por “python” y tengan
como último carácter algo que no sea ni una letra minúscula ni un
número.

Python para todos

84

re.match(“python[^0-9a-z]”, “python+”)

El uso de [0-9] para referirse a un dígito no es muy común, ya que, al
ser la comprobación de que un carácter es un dígito algo muy utilizado,
existe una secuencia especial equivalente: ‘\d’. Existen otras secuen-
cias disponibles que listamos a continuación:

“\d”•	 : un dígito. Equivale a [0-9]
“\D”•	 : cualquier carácter que no sea un dígito. Equivale a [^0-9]
“\w”•	 : cualquier caracter alfanumérico. Equivale a [a-zA-Z0-9_]
“\W”•	 : cualquier carácter no alfanumérico. Equivale a [^a-zA-
Z0-9_]

“\s”•	 : cualquier carácter en blanco. Equivale a [\t\n\r\f\v]
“\S”•	 : cualquier carácter que no sea un espacio en blanco. Equivale
a [^ \t\n\r\f\v]

Veamos ahora cómo representar repeticiones de caracteres, dado que
no sería de mucha utilidad tener que, por ejemplo, escribir una expre-
sión regular con 30 caracteres ‘\d’ para buscar números de 30 dígitos.
Para este menester tenemos los caracteres especiales +, * y ?, además de
las llaves {}.

El carácter + indica que lo que tenemos a la izquierda, sea un carác-
ter como ‘a’, una clase como ‘[abc]’ o un subpatrón como (abc),
puede encontrarse una o mas veces. Por ejemplo la expresión regular
“python+” describiría las cadenas “python”, “pythonn” y “pythonnn”,
pero no “pytho”, ya que debe haber al menos una n.

El carácter * es similar a +, pero en este caso lo que se sitúa a su iz-
quierda puede encontrarse cero o mas veces.

El carácter ? indica opcionalidad, es decir, lo que tenemos a la izquier-
da puede o no aparecer (puede aparecer 0 o 1 veces).

Finalmente las llaves sirven para indicar el número de veces exacto que
puede aparecer el carácter de la izquierda, o bien un rango de veces que
puede aparecer. Por ejemplo {3} indicaría que tiene que aparecer exac-
tamente 3 veces, {3,8} indicaría que tiene que aparecer de 3 a 8 veces,

Expresiones regulares

85

{,8} de 0 a 8 veces y {3,} tres veces o mas (las que sean).

Otro elemento interesante en las expresiones regulares, para terminar,
es la especificación de las posiciones en que se tiene que encontrar la
cadena, esa es la utilidad de ^ y $, que indican, respectivamente, que el
elemento sobre el que actúan debe ir al principio de la cadena o al final
de esta.

La cadena “http://mundogeek.net”, por ejemplo, se ajustaría a la
expresión regular “^http”, mientras que la cadena “El protocolo es
http” no lo haría, ya que el http no se encuentra al principio de la
cadena.

Usando el módulo re
Ya hemos visto por encima cómo se utiliza la función match del módu-
lo re para comprobar si una cadena se ajusta a un determinado patrón.
El primer parámetro de la función es la expresión regular, el segundo,
la cadena a comprobar y existe un tercer parámetro opcional que con-
tiene distintos flags que se pueden utilizar para modificar el comporta-
miento de las expresiones regulares.

Algunos ejemplos de flags del módulo re son re.IGNORECASE, que hace
que no se tenga en cuenta si las letras son mayúsculas o minúsculas o
re.VERBOSE, que hace que se ignoren los espacios y los comentarios en
la cadena que representa la expresión regular.

El valor de retorno de la función será None en caso de que la cadena no
se ajuste al patrón o un objeto de tipo MatchObject en caso contrario.
Este objeto MatchObject cuenta con métodos start y end que devuel-
ven la posición en la que comienza y finaliza la subcadena reconocida y
métodos group y groups que permiten acceder a los grupos que propi-
ciaron el reconocimiento de la cadena.

Al llamar al método group sin parámetros se nos devuelve el grupo 0
de la cadena reconocida. El grupo 0 es la subcadena reconocida por
la expresión regular al completo, aunque no existan paréntesis que
delimiten el grupo.

Python para todos

86

>>> mo = re.match(“http://.+\net”, “http://mundogeek.net”)
>>> print mo.group()
http://mundogeek.net

Podríamos crear grupos utilizando los paréntesis, como aprendimos
en la sección anterior, obteniendo así la parte de la cadena que nos
interese.

>>> mo = re.match(“http://(.+)\net”, “http://mundogeek.net”)
>>> print mo.group(0)
http://mundogeek.net
>>> print mo.group(1)
mundogeek

El método groups, por su parte, devuelve una lista con todos los gru-
pos, exceptuando el grupo 0, que se omite.

>>> mo = re.match(“http://(.+)\(.{3})”, “http://mundogeek.
net”)
>>> print mo.groups()
(‘mundogeek’, ‘net’)

La función search del módulo re funciona de forma similar a match;
contamos con los mismos parámetros y el mismo valor de retorno.
La única diferencia es que al utilizar match la cadena debe ajustarse al
patrón desde el primer carácter de la cadena, mientras que con search
buscamos cualquier parte de la cadena que se ajuste al patrón. Por esta
razón el método start de un objeto MatchObject obtenido mediante la
función match siempre devolverá 0, mientras que en el caso de search
esto no tiene por qué ser así.

Otra función de búsqueda del módulo re es findall. Este toma los
mismos parámetros que las dos funciones anteriores, pero devuelve una
lista con las subcadenas que cumplieron el patrón.

Otra posibilidad, si no queremos todas las coincidencias, es utilizar
finditer, que devuelve un iterador con el que consultar uno a uno los
distintos MatchObject.

Las expresiones regulares no solo permiten realizar búsquedas o
comprobaciones, sino que, como comentamos anteriormente, también

Expresiones regulares

87

tenemos funciones disponibles para dividir la cadena o realizar reem-
plazos.

La función split sin ir más lejos toma como parámetros un patrón,
una cadena y un entero opcional indicando el número máximo de
elementos en los que queremos dividir la cadena, y utiliza el patrón a
modo de puntos de separación para la cadena, devolviendo una lista
con las subcadenas.

La función sub toma como parámetros un patrón a sustituir, una
cadena que usar como reemplazo cada vez que encontremos el patrón,
la cadena sobre la que realizar las sustituciones, y un entero opcional
indicando el número máximo de sustituciones que queremos realizar.

Al llamar a estos métodos lo que ocurre en realidad es que se crea un
nuevo objeto de tipo RegexObject que representa la expresión regular, y
se llama a métodos de este objeto que tienen los mismos nombres que
las funciones del módulo.

Si vamos a utilizar un mismo patrón varias veces nos puede interesar
crear un objeto de este tipo y llamar a sus métodos nosotros mismos;
de esta forma evitamos que el intérprete tenga que crear un nuevo
objeto cada vez que usemos el patrón y mejoraremos el rendimiento de
la aplicación.

Para crear un objeto RegexObject se utiliza la función compile del
módulo, al que se le pasa como parámetro la cadena que representa el
patrón que queremos utilizar para nuestra expresión regular y, opcio-
nalmente, una serie de flags de entre los que comentamos anterior-
mente.

88

Sockets

La comunicación entre distintas entidades en una red se basa en
Python en el clásico concepto de sockets. Los sockets son un concepto
abstracto con el que se designa al punto final de una conexión.

Los programas utilizan sockets para comunicarse con otros programas,
que pueden estar situados en computadoras distintas.

Un socket queda definido por la dirección IP de la máquina, el puerto
en el que escucha, y el protocolo que utiliza.

Los tipos y funciones necesarios para trabajar con sockets se encuen-
tran en Python en el módulo socket, como no podría ser de otra
forma.

Los sockets se clasifican en sockets de flujo (socket.SOCK_STREAM) o
sockets de datagramas (socket.SOCK_DGRAM) dependiendo de si el ser-
vicio utiliza TCP, que es orientado a conexión y fiable, o UDP, respec-
tivamente. En este capítulo sólo cubriremos los sockets de flujo, que
cubren un 90% de las necesidades comunes.

Los sockets también se pueden clasificar según la familia. Tenemos
sockets UNIX (socket.AF_UNIX) que se crearon antes de la concepción
de las redes y se basan en ficheros, sockets socket.AF_INET que son los
que nos interesan, sockets socket.AF_INET6 para IPv6, etc.

Para crear un socket se utiliza el constructor socket.socket() que pue-
de tomar como parámetros opcionales la familia, el tipo y el protocolo.
Por defecto se utiliza la familia AF_INET y el tipo SOCK_STREAM.

Veremos durante el resto del capítulo cómo crear un par de programas
cliente y servidor a modo de ejemplo.

Sockets

89

Lo primero que tenemos que hacer es crear un objeto socket para el
servidor

socket_s = socket.socket()

Tenemos ahora que indicar en qué puerto se va a mantener a la escu-
cha nuestro servidor utilizando el método bind. Para sockets IP, como
es nuestro caso, el argumento de bind es una tupla que contiene el
host y el puerto. El host se puede dejar vacío, indicando al método que
puede utilizar cualquier nombre que esté disponible.

socket_s.bind((“localhost”, 9999))

Por último utilizamos listen para hacer que el socket acepte conexio-
nes entrantes y accept para comenzar a escuchar. El método listen
requiere de un parámetro que indica el número de conexiones máximas
que queremos aceptar; evidentemente, este valor debe ser al menos 1.

El método accept se mantiene a la espera de conexiones entrantes,
bloqueando la ejecución hasta que llega un mensaje.

Cuando llega un mensaje, accept desbloquea la ejecución, devolviendo
un objeto socket que representa la conexión del cliente y una tupla que
contiene el host y puerto de dicha conexión.

socket_s.listen(10)

socket_c, (host_c, puerto_c) = socket_s.accept()

Una vez que tenemos este objeto socket podemos comunicarnos con
el cliente a través suyo, mediante los métodos recv y send (o recvfrom
y sendfrom en UDP) que permiten recibir o enviar mensajes respec-
tivamente. El método send toma como parámetros los datos a enviar,
mientras que el método recv toma como parámetro el número máxi-
mo de bytes a aceptar.

recibido = socket_c.recv(1024)
print “Recibido: “, recibio
socket_c.send(recibido)

Python para todos

90

Una vez que hemos terminado de trabajar con el socket, lo cerramos
con el método close.

Crear un cliente es aún más sencillo. Solo tenemos que crear el objeto
socket, utilizar el método connect para conectarnos al servidor y uti-
lizar los métodos send y recv que vimos anteriormente. El argumento
de connect es una tupla con host y puerto, exactamente igual que bind.

socket_c = socket.socket()
socket_c.connect((“localhost”, 9999))
socket_c.send(“hola”)

Veamos por último un ejemplo completo. En este ejemplo el cliente
manda al servidor cualquier mensaje que escriba el usuario y el servi-
dor no hace más que repetir el mensaje recibido. La ejecución termina
cuando el usuario escribe quit.

Este sería el código del script servidor:

import socket

s = socket.socket()
s.bind((“localhost”, 9999))
s.listen(1)

sc, addr = s.accept()

while True:
 recibido = sc.recv(1024)
 if recibido == “quit”:
 break
 print “Recibido:”, recibido
 sc.send(recibido)

print “adios”

sc.close()
s.close()

Y a continuación tenemos el del script cliente:
view plaincopy to clipboardprint?

import socket

s = socket.socket()
s.connect((“localhost”, 9999))

Sockets

91

while True:
 mensaje = raw_input(“> “)
 s.send(mensaje)
 mensaje == “quit”:
 break

print “adios”

s.close()

92

Interactuar con
webs

Existen dos módulos principales para leer datos de URLs en Python:
urllib y urllib2. En esta lección aprenderemos a utilizar urllib2
ya que es mucho más completo, aunque urllib tiene funcionalidades
propias que no se pueden encontrar en urllib2, por lo que también lo
tocaremos de pasada.

urllib2 puede leer datos de una URL usando varios protocolos como
HTTP, HTTPS, FTP, o Gopher.

Se utiliza una función urlopen para crear un objeto parecido a un
fichero con el que leer de la URL. Este objeto cuenta con métodos
como read, readline, readlines y close, los cuales funcionan exac-
tamente igual que en los objetos file, aunque en realidad estamos
trabajando con un wrapper que nos abstrae de un socket que se utiliza
por debajo.

El método read, como recordareis, sirve para leer el “archivo” completo
o el número de bytes especificado como parámetro, readline para leer
una línea, y readlines para leer todas las líneas y devolver una lista con
ellas.

También contamos con un par de métodos geturl, para obtener la
URL de la que estamos leyendo (que puede ser útil para comprobar si
ha habido una redirección) e info que nos devuelve un objeto con las
cabeceras de respuesta del servidor (a las que también se puede acceder
mediante el atributo headers).

import urllib2

Interactuar con webs

93

try:
 f = urllib2.urlopen(“http://www.python.org”)
 print f.read()
 f.close()
except HTTPError, e:
 print “Ocurrió un error”
 print e.code
except URLError, e:
 print “Ocurrió un error”
 print e.reason

Al trabajar con urllib2 nos podemos encontrar, como vemos, con
errores de tipo URLError. Si trabajamos con HTTP podemos encon-
trarnos también con errores de la subclase de URLError HTTPError, que
se lanzan cuando el servidor devuelve un código de error HTTP, como
el error 404 cuando no se encuentra el recurso. También podríamos
encontrarnos con errores lanzados por la librería que urllib2 utiliza
por debajo para las transferencias HTTP: httplib; o con excepciones
lanzadas por el propio módulo socket.

La función urlopen cuenta con un parámetro opcional data con el que
poder enviar información a direcciones HTTP (y solo HTTP) usando
POST (los parámetros se envían en la propia petición), por ejemplo
para responder a un formulario. Este parámetro es una cadena codifi-
cada adecuadamente, siguiendo el formato utilizado en las URLs:

‘password=contrase%A4a&usuario=manuel’

Lo más sencillo para codificar la cadena es utilizar el método urlen-
code de urllib, que acepta un diccionario o una lista de tuplas (clave,
valor) y genera la cadena codificada correspondiente:

import urllib, urllib2

params = urllib.urlencode({“usuario”: “manuel”,
 “password”: “contraseña”})
f = urllib2.urlopen(“http://ejemplo.com/login”, params)

Si lo único que queremos hacer es descargar el contenido de una URL
a un archivo local, podemos utilizar la función urlretrieve de urllib
en lugar de leer de un objeto creado con urlopen y escribir los datos

Python para todos

94

leídos.

La función urlretrieve toma como parámetros la URL a descar-
gar y, opcionalmente, un parámetro filename con la ruta local en la
que guardar el archivo, un parámetro data similar al de urlopen y un
parámetro reporthook con una función que utilizar para informar del
progreso.

A excepción de las ocasiones en las que se utiliza el parámetro data
las conexiones siempre se realizan utilizando GET (los parámetros se
envían en la URL). Para enviar datos usando GET basta con concate-
nar la cadena resultante de urlencode con la URL a la que nos vamos a
conectar mediante el símbolo ?.

params = urllib.urlencode({“usuario”: “manuel”,
 “password”: “contraseña”})

f = urllib2.urlopen(“http://ejemplo.com/login” +
 “?” + params)

En urllib también se utiliza una función urlopen para crear nuestros
pseudo-archivos, pero a diferencia de la versión de urllib, la función
urlopen de urllib2 también puede tomar como parámetro un objeto
Request, en lugar de la URL y los datos a enviar.

La clase Request define objetos que encapsulan toda la información
relativa a una petición. A través de este objeto podemos realizar peti-
ciones más complejas, añadiendo nuestras propias cabeceras, como el
User-Agent.

El constructor más sencillo para el objeto Request no toma más que
una cadena indicando la URL a la que conectarse, por lo que utilizar
este objeto como parámetro de urlopen sería equivalente a utilizar una
cadena con la URL directamente.

Sin embargo el constructor de Request también tiene como paráme-
tros opcionales una cadena data para mandar datos por POST y un
diccionario headers con las cabeceras (además de un par de campos
origin_req_host y unverifiable, que quedan fuera del propósito del
capítulo por ser de raro uso).

Interactuar con webs

95

Veamos cómo añadir nuestras propias cabeceras utilizando como
ejemplo la cabecera User-Agent. El User-Agent es una cabecera que
sirve para identificar el navegador y sistema operativo que estamos
utilizando para conectarnos a esa URL. Por defecto urllib2 se identi-
fica como “Python-urllib/2.5”; si quisiéramos identificarnos como un
Linux corriendo Konqueror por ejemplo, usaríamos un código similar
al siguiente:

ua = “Mozilla/5.0 (compatible; Konqueror/3.5.8; Linux)”
h = {“User-Agent”: ua}
r = urllib2.Request(“http://www.python.org”, headers=h)
f = urllib2.urlopen(r)
print f.read()

Para personalizar la forma en que trabaja urllib2 podemos instalar un
grupo de manejadores (handlers) agrupados en un objeto de la clase
OpenerDirector (opener o abridor), que será el que se utilice a partir de
ese momento al llamar a urlopen.

Para construir un opener se utiliza la función build_opener a la que se
le pasa los manejadores que formarán parte del opener. El opener se
encargará de encadenar la ejecución de los distintos manejadores en el
orden dado. También se puede usar el constructor de OpenerDirector,
y añadir los manejadores usando su método add_handler.

Para instalar el opener una vez creado se utiliza la función ins-
tall_opener, que toma como parámetro el opener a instalar. También
se podría, si sólo queremos abrir la URL con ese opener una sola vez,
utilizar el método open del opener.

urllib2 cuenta con handlers que se encargan de manejar los esquemas
disponibles (HTTP, HTTPS, FTP), manejar la autenticación, manejar
las redirecciones, etc.

Para añadir autenticación tendríamos que instalar un opener que in-
cluyera como manejador HTTPBasicAuthHandler, ProxyBasicAuthHan-
dler, HTTPDigestAuthHandler y/o ProxyDigestAuthHandler.

Para utilizar autenticación HTTP básica, por ejemplo, usaríamos

Python para todos

96

HTTPBasicAuthHandler:

aut_h = urllib2.HTTPBasicAuthHandler()
aut_h.add_password(“realm”, “host”, “usuario”, “password”)

opener = urllib2.build_opener(aut_h)
urllib2.install_opener(opener)

f = urllib2.urlopen(“http://www.python.org”)

Si quisiéramos especificar un proxy en el código tendríamos que
utilizar un opener que contuviera el manejador ProxyHandler. El
manejador por defecto incluye una instacia de ProxyHandler construi-
do llamando al inicializador sin parámetros, con lo que se lee la lista
de proxies a utilizar de la variable de entorno adecuada. Sin embargo
también podemos construir un ProxyHandler pasando como paráme-
tro al inicializador un diccionario cuyas claves son los protocolos y los
valores, la URL del proxy a utilizar para dicho protocolo.

proxy_h = urllib2.ProxyHandler({“http” : “http://miproxy.
net:123”})

opener = urllib2.build_opener(proxy_h)
urllib2.install_opener(opener)

f = urllib2.urlopen(“http://www.python.org”)

Para que se guarden las cookies que manda HTTP utilizamos el ma-
nejador HTTPCookieProcessor.

cookie_h = urllib2.HTTPCookieProcessor()

opener = urllib2.build_opener(cookie_h)
urllib2.install_opener(opener)

f = urllib2.urlopen(“http://www.python.org”)

Si queremos acceder a estas cookies o poder mandar nuestras propias
cookies, podemos pasarle como parámetro al inicializador de HTTPCoo-
kieProcessor un objeto de tipo CookieJar del módulo cookielib.

Para leer las cookies mandadas basta crear un objeto iterable a partir
del CookieJar (también podríamos buscar las cabeceras correspondien-
tes, pero este sistema es más claro y sencillo):

Interactuar con webs

97

import urllib2, cookielib

cookie_j = cookielib.CookieJar()

cookie_h = urllib2.HTTPCookieProcessor(cookie_j)

opener = urllib2.build_opener(cookie_h)
opener.open(“http://www.python.org”)

for num, cookie in enumerate(cookie_j):
 print num, cookie.name
 print cookie.value
 print

En el improbable caso de que necesitáramos añadir una cookie an-
tes de realizar la conexión, en lugar de conectarnos para que el sitio
la mande, podríamos utilizar el método set_cookie de CookieJar, al
que le pasamos un objeto de tipo Cookie. El constructor de Cookie, no
obstante, es bastante complicado.

98

Threads

¿Qué son los procesos y los
threads?

Las computadoras serían mucho menos útiles si no pudiéramos hacer
más de una cosa a la vez. Si no pudiéramos, por ejemplo, escuchar
música en nuestro reproductor de audio favorito mientras leemos un
tutorial de Python en Mundo Geek.

Pero, ¿cómo se conseguía esto en computadoras antiguas con un solo
núcleo / una sola CPU? Lo que ocurría, y lo que ocurre ahora, es que
en realidad no estamos ejecutando varios procesos a la vez (se llama
proceso a un programa en ejecución), sino que los procesos se van tur-
nando y, dada la velocidad a la que ejecutan las instrucciones, nosotros
tenemos la impresión de que las tareas se ejecutan de forma paralela
como si tuviéramos multitarea real.

Cada vez que un proceso distinto pasa a ejecutarse es necesario reali-
zar lo que se llama un cambio de contexto, durante el cual se salva el
estado del programa que se estaba ejecutando a memoria y se carga el
estado del programa que va a entrar a ejecutarse.

En Python podemos crear nuevos procesos mediante la función
os.fork, que ejecuta la llamada al sistema fork, o mediante otras
funciones más avanzadas como popen2.popen2, de forma que nuestro
programa pueda realizar varias tareas de forma paralela.

Sin embargo el cambio de contexto puede ser relativamente lento, y
los recursos necesarios para mantener el estado demasiados, por lo que
a menudo es mucho más eficaz utilizar lo que se conoce como threads,
hilos de ejecución, o procesos ligeros.

Threads

99

Los threads son un concepto similar a los procesos: también se trata de
código en ejecución. Sin embargo los threads se ejecutan dentro de un
proceso, y los threads del proceso comparten recursos entre si, como la
memoria, por ejemplo.

El sistema operativo necesita menos recursos para crear y gestionar los
threads, y al compartir recursos, el cambio de contexto es más rápido.
Además, dado que los threads comparten el mismo espacio de me-
moria global, es sencillo compartir información entre ellos: cualquier
variable global que tengamos en nuestro programa es vista por todos
los threads.

El GIL
La ejecución de los threads en Python está controlada por el GIL
(Global Interpreter Lock) de forma que sólo un thread puede ejecutar-
se a la vez, independientemente del número de procesadores con el que
cuente la máquina. Esto posibilita que el escribir extensiones en C para
Python sea mucho más sencillo, pero tiene la desventaja de limitar mu-
cho el rendimiento, por lo que a pesar de todo, en Python, en ocasiones
nos puede interesar más utilizar procesos que threads, que no sufren de
esta limitación.

Cada cierto número de instrucciones de bytecode la máquina virtual
para la ejecución del thread y elige otro de entre los que estaban espe-
rando.

Por defecto el cambio de thread se realiza cada 10 instrucciones de
bytecode, aunque se puede modificar mediante la función sys.set-
checkinterval. También se cambia de thread cuando el hilo se pone a
dormir con time.sleep o cuando comienza una operación de entrada/
salida, las cuales pueden tardar mucho en finalizar, y por lo tanto, de no
realizar el cambio, tendríamos a la CPU demasiado tiempo sin trabajar
esperando a que la operación de E/S terminara.

Para minimizar un poco el efecto del GIL en el rendimiento de nues-
tra aplicación es conveniente llamar al intérprete con el flag -O, lo que
hará que se genere un bytecode optimizado con menos instrucciones, y,

Python para todos

100

por lo tanto, menos cambios de contexto. También podemos plantear-
nos el utilizar procesos en lugar de threads, como ya comentamos, uti-
lizando por ejemplo el módulo processing; escribir el código en el que
el rendimiento sea crítico en una extensión en C o utilizar IronPython
o Jython, que carecen de GIL.

Threads en Python
El trabajo con threads se lleva a cabo en Python mediante el módulo
thread. Este módulo es opcional y dependiente de la plataforma, y
puede ser necesario, aunque no es común, recompilar el intérprete para
añadir el soporte de threads.

Además de thread, también contamos con el módulo threading que se
apoya en el primero para proporcionarnos una API de más alto nivel,
más completa, y orientada a objetos. El módulo threading se basa
ligeramente en el modelo de threads de Java.

El módulo threading contiene una clase Thread que debemos ex-
tender para crear nuestros propios hilos de ejecución. El método run
contendrá el código que queremos que ejecute el thread. Si queremos
especificar nuestro propio constructor, este deberá llamar a threading.
Thread.__init__(self) para inicializar el objeto correctamente.

import threading

class MiThread(threading.Thread):
 def __init__(self, num):
 threading.Thread.__init__(self)
 self.num = num

 def run(self):
 print “Soy el hilo”, self.num

Para que el thread comience a ejecutar su código basta con crear una
instancia de la clase que acabamos de definir y llamar a su método
start. El código del hilo principal y el del que acabamos de crear se
ejecutarán de forma concurrente.

print “Soy el hilo principal”

for i in range(0, 10):

Threads

101

 t = MiThread(i)
 t.start()
 t.join()

El método join se utiliza para que el hilo que ejecuta la llamada se
bloquee hasta que finalice el thread sobre el que se llama. En este caso
se utiliza para que el hilo principal no termine su ejecución antes que
los hijos, lo cuál podría resultar en algunas plataformas en la termina-
ción de los hijos antes de finalizar su ejecución. El método join puede
tomar como parámetro un número en coma flotante indicando el
número máximo de segundos a esperar.

Si se intenta llamar al método start para una instancia que ya se está
ejecutando, obtendremos una excepción.

La forma recomendada de crear nuevos hilos de ejecución consiste en
extender la clase Thread, como hemos visto, aunque también es posible
crear una instancia de Thread directamente, e indicar como parámetros
del constructor una clase ejecutable (una clase con el método espe-
cial __call__) o una función a ejecutar, y los argumentos en una tupla
(parámetro args) o un diccionario (parámetro kwargs).

import threading

def imprime(num):
 print “Soy el hilo”, num

print “Soy el hilo principal”

for i in range(0, 10):
 t = threading.Thread(target=imprime, args=(i,))
 t.start()

Además de los parámetros target, args y kwargs también podemos
pasar al constructor un parámetro de tipo cadena name con el nom-
bre que queremos que tome el thread (el thread tendrá un nombre
predeterminado aunque no lo especifiquemos); un parámetro de tipo
booleano verbose para indicar al módulo que imprima mensajes sobre
el estado de los threads para la depuración y un parámetro group, que
por ahora no admite ningún valor pero que en el futuro se utilizará
para crear grupos de threads y poder trabajar a nivel de grupos.

Python para todos

102

Para comprobar si un thread sigue ejecutándose, se puede utilizar el
método isAlive. También podemos asignar un nombre al hilo y con-
sultar su nombre con los métodos setName y getName, respectivamente.

Mediante la función threading.enumerate obtendremos una lista de
los objetos Thread que se están ejecutando, incluyendo el hilo principal
(podemos comparar el objeto Thread con la variable main_thread para
comprobar si se trata del hilo principal) y con threading.activeCount
podemos consultar el número de threads ejecutándose.

Los objetos Thread también cuentan con un método setDaemon que
toma un valor booleano indicando si se trata de un demonio. La utili-
dad de esto es que si solo quedan threads de tipo demonio ejecutándo-
se, la aplicación terminará automáticamente, terminando estos threads
de forma segura.

Por último tenemos en el módulo threading una clase Timer que he-
reda de Thread y cuya utilidad es la de ejecutar el código de su método
run después de un periodo de tiempo indicado como parámetro en
su constructor. También incluye un método cancel mediante el que
cancelar la ejecución antes de que termine el periodo de espera.

Sincronización
Uno de los mayores problemas a los que tenemos que enfrentarnos al
utilizar threads es la necesidad de sincronizar el acceso a ciertos recur-
sos por parte de los threads. Entre los mecanismos de sincronización
que tenemos disponibles en el módulo threading se encuentran los
locks, locks reentrantes, semáforos, condiciones y eventos.

Los locks, también llamados mutex (de mutual exclusion), cierres
de exclusión mutua, cierres o candados, son objetos con dos estados
posibles: adquirido o libre. Cuando un thread adquiere el candado, los
demás threads que lleguen a ese punto posteriormente y pidan adqui-
rirlo se bloquearán hasta que el thread que lo ha adquirido libere el
candado, momento en el cuál podrá entrar otro thread.

El candado se representa mediante la clase Lock. Para adquirir el

Threads

103

candado se utiliza el método acquire del objeto, al que se le puede
pasar un booleano para indicar si queremos esperar a que se libere
(True) o no (False). Si indicamos que no queremos esperar, el método
devolverá True o False dependiendo de si se adquirió o no el candado,
respectivamente. Por defecto, si no se indica nada, el hilo se bloquea
indefinidamente.

Para liberar el candado una vez hemos terminado de ejecutar el bloque
de código en el que pudiera producirse un problema de concurrencia,
se utiliza el método release.

lista = []

lock = threading.Lock()

def anyadir(obj):
 lock.acquire()
 lista.append(obj)
 lock.release()

def obtener():
 lock.acquire()
 obj = lista.pop()
 lock.release()
 return obj

La clase RLock funciona de forma similar a Lock, pero en este caso el
candado puede ser adquirido por el mismo thread varias veces, y no
quedará liberado hasta que el thread llame a release tantas veces como
llamó a acquire. Como en Lock, y como en todas las primitivas de sin-
cronización que veremos a continuación, es posible indicar a acquire si
queremos que se bloquee o no.

Los semáforos son otra clase de candados. La clase correspondiente,
Semaphore, también cuenta con métodos acquire y release, pero se di-
ferencia de un Lock normal en que el constructor de Semaphore puede
tomar como parámetro opcional un entero value indicando el número
máximo de threads que pueden acceder a la vez a la sección de código
crítico. Si no se indica nada permite el acceso a un solo thread.

Cuando un thread llama a acquire, la variable que indica el número
de threads que pueden adquirir el semáforo disminuye en 1, porque

Python para todos

104

hemos permitido entrar en la sección de código crítico a un hilo más.
Cuando un hilo llama a release, la variable aumenta en 1.

No es hasta que esta variable del semáforo es 0, que llamar a acquire
producirá un bloqueo en el thread que realizó la petición, a la espera de
que algún otro thread llame a release para liberar su plaza.

Es importante destacar que el valor inicial de la variable tal como lo
pasamos en el constructor, no es un límite máximo, sino que múltiples
llamadas a release pueden hacer que el valor de la variable sea mayor
que su valor original. Si no es esto lo que queremos, podemos utilizar
la clase BoundedSemaphore en cuyo caso, ahora si, se consideraría un
error llamar a release demasiadas veces, y se lanzaría una excepción de
tipo ValueError de superarse el valor inicial.

Podríamos utilizar los semáforos, por ejemplo, en un pequeño pro-
grama en el que múltiples threads descargaran datos de una URL, de
forma que pudieramos limitar el número de conexiones a realizar al
sitio web para no bombardear el sitio con cientos de peticiones concu-
rrentes.

semaforo = threading.Semaphore(4)

def descargar(url):
 semaforo.acquire()
 urllib.urlretrieve(url)
 semaforo.release()

Las condiciones (clase Condition) son de utilidad para hacer que los
threads sólo puedan entrar en la sección crítica de darse una cierta
condición o evento. Para esto utilizan un Lock pasado como parámetro,
o crean un objeto RLock automaticamente si no se pasa ningún pará-
metro al constructor.

Son especialmente adecuadas para el clásico problema de productor-
consumidor. La clase cuenta con métodos acquire y release, que lla-
marán a los métodos correspondientes del candado asociado. También
tenemos métodos wait, notify y notifyAll.

El método wait debe llamarse después de haber adquirido el candado

Threads

105

con acquire. Este método libera el candado y bloquea al thread hasta
que una llamada a notify o notifyAll en otro thread le indican que se
ha cumplido la condición por la que esperaba. El thread que informa a
los demás de que se ha producido la condición, también debe llamar a
acquire antes de llamar a notify o notifyAll.

Al llamar a notify, se informa del evento a un solo thread, y por tanto
se despierta un solo thread. Al llamar a notifyAll se despiertan todos
los threads que esperaban a la condición.

Tanto el thread que notifica como los que son notificados tienen que
terminar liberando el lock con release.

lista = []
cond = threading.Condition()

def consumir():
 cond.acquire()
 cond.wait()
 obj = lista.pop()
 cond.release()
 return obj

def producir(obj):
 cond.acquire()
 lista.append(obj)
 cond.notify()
 cond.release()

Los eventos, implementados mediante al clase Event, son un wra-
pper por encima de Condition y sirven principalmente para coordinar
threads mediante señales que indican que se ha producido un evento.
Los eventos nos abstraen del hecho de que estemos utilizando un Lock
por debajo, por lo que carecen de métodos acquire y release.

El thread que debe esperar el evento llama al método wait y se blo-
quea, opcionalmente pasando como parámetro un número en coma
flotante indicando el número máximo de segundos a esperar. Otro
hilo, cuando ocurre el evento, manda la señal a los threads bloqueados
a la espera de dicho evento utilizando el método set. Los threads que
estaban esperando se desbloquean una vez recibida la señal. El flag que
determina si se ha producido el evento se puede volver a establecer a
falso usando clear.

Python para todos

106

Como vemos los eventos son muy similares a las condiciones, a excep-
ción de que se desbloquean todos los threads que esperaban el evento y
que no tenemos que llamar a acquire y release.

import threading, time

class MiThread(threading.Thread):
 def __init__(self, evento):
 threading.Thread.__init__(self)
 self.evento = evento

 def run(self):
 print self.getName(), “esperando al evento”
 self.evento.wait()
 print self.getName(), “termina la espera”

evento = threading.Event()
t1 = MiThread(evento)
t1.start()
t2 = MiThread(evento)
t2.start()

Esperamos un poco
time.sleep(5)
evento.set()

Por último, un pequeño extra. Si sois usuarios de Java sin duda estaréis
echando en falta una palabra clave syncronized para hacer que sólo
un thread pueda acceder al método sobre el que se utiliza a la vez. Una
construcción común es el uso de un decorador para implementar esta
funcionalidad usando un Lock. Sería algo así:

def synchronized(lock):
 def dec(f):
 def func_dec(*args, **kwargs):
 lock.acquire()
 try:
 return f(*args, **kwargs)
 finally:
 lock.release()
 return func_dec
 return dec

class MyThread(threading.Thread):
 @synchronized(mi_lock)
 def run(self):
 print “metodo sincronizado”

Threads

107

Datos globales independientes
Como ya hemos comentado los threads comparten las variables
globales. Sin embargo pueden existir situaciones en las que queramos
utilizar variables globales pero que estas variables se comporten como
si fueran locales a un solo thread. Es decir, que cada uno de los threads
tengan valores distintos independientes, y que los cambios de un deter-
minado thread sobre el valor no se vean reflejados en las copias de los
demás threads.

Para lograr este comportamiento se puede utilizar la clase threading.
local, que crea un almacén de datos locales. Primero debemos crear
una instancia de la clase, o de una subclase, para después almacenar y
obtener los valores a través de parámetros de la clase.

datos_locales = threading.local()
datos_locales.mi_var = “hola”
print datos_locales.mi_var

Fijémonos en el siguiente código, por ejemplo. Para el hilo principal el
objeto local tiene un atributo var, y por lo tanto el print imprime su
valor sin problemas. Sin embargo para el hilo t ese atributo no existe, y
por lo tanto lanza una excepción.

local = threading.local()

def f():
 print local.var

local.var = “hola”
t = threading.Thread(target=f)
print local.var
t.start()
t.join()

Compartir información
Para compartir información entre los threads de forma sencilla po-
demos utilizar la clase Queue.Queue, que implementa una cola (una
estructura de datos de tipo FIFO) con soporte multihilo. Esta clase
utiliza las primitivas de threading para ahorrarnos tener que sincroni-
zar el acceso a los datos nosotros mismos.

Python para todos

108

El constructor de Queue toma un parámetro opcional indicando el
tamaño máximo de la cola. Si no se indica ningún valor no hay límite
de tamaño.

Para añadir un elemento a la cola se utiliza el método put(item); para
obtener el siguiente elemento, get(). Ambos métodos tienen un pará-
metro booleano opcional block que indica si queremos que se espere
hasta que haya algún elemento en la cola para poder devolverlo o hasta
que la cola deje de estar llena para poder introducirlo.

También existe un parámetro opcional timeout que indica, en segun-
dos, el tiempo máximo a esperar. Si el timeout acaba sin poder haber
realizado la operación debido a que la cola estaba llena o vacía, o bien
si block era False, se lanzará una excepción de tipo Queue.Full o
Queue.Empty, respectivamente.

Con qsize obtenemos el tamaño de la cola y con empty() y full()
podemos comprobar si está vacía o llena.

q = Queue.Queue()

class MiThread(threading.Thread):
 def __init__(self, q):
 self.q = q
 threading.Thread.__init__(self)

 def run(self):
 while True:
 try:
 obj = q.get(False)
 except Queue.Empty:
 print “Fin”
 break
 print obj

for i in range(10):
 q.put(i)

t = MiThread(q)
t.start()
t.join()

	Introducción
	¿Qué es Python?
	¿Por qué Python?
	Instalación de Python
	Herramientas básicas

	Mi primer programa en Python
	Tipos básicos
	Números
	Cadenas
	Booleanos

	Colecciones
	Listas
	Tuplas
	Diccionarios

	Control de flujo
	Sentencias condicionales
	Bucles

	Funciones
	Orientación a Objetos
	Clases y objetos
	Herencia
	Herencia múltiple
	Polimorfismo
	Encapsulación
	Clases de nuevo-estilo
	Métodos especiales

	Revisitando Objetos
	Diccionarios
	Cadenas
	Listas

	Programación funcional
	Funciones de orden superior
	Iteraciones de orden superior sobre listas
	Funciones lambda
	Comprensión de listas
	Generadores
	Decoradores

	Excepciones
	Módulos y Paquetes
	Módulos
	Paquetes

	Entrada/Salida Y Ficheros
	Entrada estándar
	Parámetros de línea de comando
	Salida estándar
	Archivos

	Expresiones Regulares
	Patrones
	Usando el módulo re

	Sockets
	Interactuar con webs
	Threads
	¿Qué son los procesos y los threads?
	El GIL
	Threads en Python
	Sincronización
	Datos globales independientes
	Compartir información

