Python

PARA TODOS

Raul Gonzalez Duque

Python

PARA TODOS

Raul Gonzalez Duque

Python para todos
por Raul Gonzilez Duque

Este libro se distribuye bajo una licencia Creative Commons Reconocimien-

to 2.5 Espafia. Usted es libre de:

copiar, distribuir y comunicar publicamente la obra
hacer obras derivadas

Bajo las condiciones siguientes:

Reconocimiento. Debe reconocer y dar crédito al autor original

(Raul Gonzilez Duque)

La imégen de portada es una fotografia de una pitén verde de la especie
Morelia viridis cuyo autor es Ian Chien. La fotografia estd licenciada bajo
Creative Commons Attribution ShareAlike 2.0

Introduccién
¢Qué es Python?
¢Por qué Python?
Instalacién de Python

Herramientas bésicas

Mi primer programa en Python

Tipos basicos
Numeros
Cadenas
Booleanos
Colecciones
Listas
Tuplas
Diccionarios
Control de flujo
Sentencias condicionales
Bucles
Funciones
Orientacién a Objetos
Clases y objetos
Herencia
Herencia multiple
Polimorfismo
Encapsulacién
Clases de “nuevo-estilo”
Métodos especiales
Revisitando Objetos
Diccionarios
Cadenas
Listas

CONTENIDO

O 0NN ™

14
15
20
20
22
22
24
25
27
27
30
34
40
40
43
44
45
46
48
48
51
51
52
52

Programacién funcional 54

Funciones de orden superior 54
Iteraciones de orden superior sobre listas 56
Funciones lambda 57
Comprensién de listas 58
Generadores 59
Decoradores 60
Excepciones 62
Médulos y Paquetes 69
Moédulos 69
Paquetes 72
Entrada/Salida Y Ficheros 73
Entrada estindar 73
Parametros de linea de comando 74
Salida estiandar 74
Archivos 78
Expresiones Regulares 81
Patrones 81
Usando el médulo re 85
Sockets 88
Interactuar con webs 92
Threads 98
¢Qué son los procesos y los threads? 98
El GIL 99
'Threads en Python 100
Sincronizacién 102
Datos globales independientes 107

Compartir informacién 107

INTRODUCCION

¢ Qué es Python?

Python es un lenguaje de programacién creado por Guido van Rossum
a principios de los afios 90 cuyo nombre estd inspirado en el grupo de
cémicos ingleses “Monty Python”. Es un lenguaje similar a Perl, pero
con una sintaxis muy limpia y que favorece un cédigo legible.

Se trata de un lenguaje interpretado o de script, con tipado dindmico,
fuertemente tipado, multiplataforma y orientado a objetos.

Lenguaje interpretado o de script

Un lenguaje interpretado o de script es aquel que se ejecuta utilizando
un programa intermedio llamado intérprete, en lugar de compilar el
c6digo a lenguaje maquina que pueda comprender y ejecutar directa-
mente una computadora (lenguajes compilados).

La ventaja de los lenguajes compilados es que su ejecucién es mds
rapida. Sin embargo los lenguajes interpretados son mds flexibles y mds
portables.

Python tiene, no obstante, muchas de las caracteristicas de los lengua-
jes compilados, por lo que se podria decir que es semi interpretado. En
Python, como en Java y muchos otros lenguajes, el cédigo fuente se
traduce a un pseudo c6digo mdquina intermedio llamado bytecode la
primera vez que se ejecuta, generando archivos .pyc o .pyo (bytecode
optimizado), que son los que se ejecutardn en sucesivas ocasiones.

Tipado dinamico
La caracteristica de tipado dindmico se refiere a que no es necesario
declarar el tipo de dato que va a contener una determinada variable,

Introduccién

sino que su tipo se determinard en tiempo de ejecucién seguin el tipo
del valor al que se asigne, y el tipo de esta variable puede cambiar si se
le asigna un valor de otro tipo.

Fuertemente tipado

No se permite tratar a una variable como si fuera de un tipo distinto
al que tiene, es necesario convertir de forma explicita dicha variable
al nuevo tipo previamente. Por ejemplo, si tenemos una variable que
contiene un texto (variable de tipo cadena o string) no podremos tra-
tarla como un nimero (sumar la cadena "9" y el numero 8). En otros
lenguajes el tipo de la variable cambiaria para adaptarse al comporta-
miento esperado, aunque esto es mds propenso a errores.

Multiplataforma

El intérprete de Python estd disponible en multitud de plataformas
(UNIX, Solaris, Linux, DOS, Windows, OS/2, Mac OS, etc.) por lo
que si no utilizamos librerias especificas de cada plataforma nuestro
programa podré correr en todos estos sistemas sin grandes cambios.

Orientado a objetos

La orientacién a objetos es un paradigma de programacién en el que
los conceptos del mundo real relevantes para nuestro problema se tras-
ladan a clases y objetos en nuestro programa. La ejecucién del progra-
ma consiste en una serie de interacciones entre los objetos.

Python también permite la programacién imperativa, programacion
funcional y programacién orientada a aspectos.

¢Por qué Python?

Python es un lenguaje que todo el mundo deberia conocer. Su sintaxis
simple, clara y sencilla; el tipado dindmico, el gestor de memoria, la
gran cantidad de librerias disponibles y la potencia del lenguaje, entre
otros, hacen que desarrollar una aplicacién en Python sea sencillo, muy
rapido y, lo que es mds importante, divertido.

La sintaxis de Python es tan sencilla y cercana al lenguaje natural que

Python para todos

los programas elaborados en Python parecen pseudocédigo. Por este
motivo se trata ademads de uno de los mejores lenguajes para comenzar
a programar.

Python no es adecuado sin embargo para la programacién de bajo
nivel o para aplicaciones en las que el rendimiento sea critico.

Algunos casos de éxito en el uso de Python son Google, Yahoo, la
NASA, Industrias Ligh & Magic, y todas las distribuciones Linux, en
las que Python cada vez representa un tanto por ciento mayor de los
programas disponibles.

Instalacion de Python

Existen varias implementaciones distintas de Python: CPython,

Jython, IronPython, PyPy, etc.

CPython es la mis utilizada, la més rdpida y la mas madura. Cuando la
gente habla de Python normalmente se refiere a esta implementacién.
En este caso tanto el intérprete como los médulos estdn escritos en C.

Jython es la implementacién en Java de Python, mientras que
IronPython es su contrapartida en C# (NET). Su interés estriva en
que utilizando estas implementaciones se pueden utilizar todas las

librerias disponibles para los programadores de Java y .NET.

PyPy, por tltimo, como habréis adivinado por el nombre, se trata de
una implementacién en Python de Python.

CPython estd instalado por defecto en la mayor parte de las distribu-
ciones Linux y en las ultimas versiones de Mac OS. Para comprobar si
estd instalado abre una terminal y escribe python. Si estd instalado se
iniciard la consola interactiva de Python y obtendremos parecido a lo
siguiente:

Python 2.5.1 (r251:54863, May 2 2007, 16:56:35)
[GCC 4.1.2 (Ubuntu 4.1.2-Oubuntu4)] on linux2

Type "help", "copyright", "credits" or "license" for more
information.
>>>

Introduccién

La primera linea nos indica la versién de Python que tenemos ins-
talada. Al final podemos ver el prompt (>>>) que nos indica que el
intérprete estd esperando cédigo del usuario. Podemos salir escribiendo
exit(), o pulsando Control + D.

Si no te muestra algo parecido no te preocupes, instalar Python es muy
sencillo. Puedes descargar la versién correspondiente a tu sistema ope-
rativo desde la web de Python, en Az2p.//www. python.org/download/.
Existen instaladores para Windows y Mac OS. Si utilizas Linux es
muy probable que puedas instalarlo usando la herramienta de gestién
de paquetes de tu distribucién, aunque también podemos descargar la
aplicacién compilada desde la web de Python.

Herramientas basicas

Existen dos formas de ejecutar c6digo Python. Podemos escribir lineas
de cédigo en el intérprete y obtener una respuesta del intérprete para
cada linea (sesién interactiva) o bien podemos escribir el codigo de un
programa en un archivo de texto y ejecutarlo.

A la hora de realizar una sesién interactiva os aconsejo instalar y uti-
lizar iPython, en lugar de la consola interactiva de Python. Se puede
encontrar en http://ipython.scipy.org/. iPython cuenta con caracteristicas
anadidas muy interesantes, como el autocompletado o el operador ?.

La funcién de autocompletado se lanza pulsando el tabulador. Si
escribimos fi y pulsamos Tab nos mostrara una lista de los objetos
que comienzan con fi (file, filter y finally). Si escribimos file.y
pulsamos Tab nos mostrard una lista de los métodos y propiedades del
objeto file.

El operador ? nos muestra informacién sobre los objetos. Se utiliza
afiadiendo el simbolo de interrogacién al final del nombre del objeto
del cual queremos mds informacién. Por ejemplo:

In [3]: str?
Type: type
Base Class:
String Form:

Python para todos

Namespace: Python builtin
Docstring:
str(object) -> string

Return a nice string representation of the object.
If the argument is a string, the return value is the same
object.

En el campo de IDEs y editores de cédigo gratuitos PyDEV (bz£p.//
pydev.sourceforge.net/) se alza como cabeza de serie. PyYDEV es un plu-
gin para Eclipse que permite utilizar este IDE multiplataforma para
programar en Python. Cuenta con autocompletado de cédigo (con
informacién sobre cada elemento), resaltado de sintaxis, un depurador
grifico, resaltado de errores, explorador de clases, formateo del cédigo,
refactorizacion, etc. Sin duda es la opcién més completa, sobre todo si
instalamos las extensiones comerciales, aunque necesita de una canti-
dad importante de memoria y no es del todo estable.

Otras opciones gratuitas a considerar son SPE o Stani’s Python Editor
(http://sourceforge. net/projects/spe/), Eric (http://die-offenbachs.de/eric/),
BOA Constructor (http://boa-constructor.sourceforge.net/) o incluso
emacs o vim.

Si no te importa desembolsar algo de dinero, Komodo (h#2p://www.
activestate.com/komodo_ide/) y Wing IDE (http://www.wingware.com/)
son también muy buenas opciones, con montones de caracteristicas
interesantes, como PyDEV, pero mucho mas estables y robustos. Ade-
mis, si desarrollas software libre no comercial puedes contactar con
Wing Ware y obtener, con un poco de suerte, una licencia gratuita para

Wing IDE Professional :)

10

MI PRIMER
PROGRAMA EN
PYTHON

Como comentdbamos en el capitulo anterior existen dos formas de
ejecutar cédigo Python, bien en una sesion interactiva (linea a linea)
con el intérprete, o bien de la forma habitual, escribiendo el cédigo en
un archivo de cédigo fuente y ejecutindolo.

El primer programa que vamos a escribir en Python es el cldsico Hola
Mundo, y en este lenguaje es tan simple como:

print "Hola Mundo"

Vamos a probarlo primero en el intérprete. Ejecuta python o ipython
segun tus preferencias, escribe la linea anterior y pulsa Enter. El intér-
prete responderd mostrando en la consola el texto Hola Mundo.

Vamos ahora a crear un archivo de texto con el cédigo anterior, de
forma que pudiéramos distribuir nuestro pequefio gran programa entre
nuestros amigos. Abre tu editor de texto preferido o bien el IDE que
hayas elegido y copia la linea anterior. Guardalo como hola.py, por
ejemplo.

Ejecutar este programa es tan sencillo como indicarle el nombre del
archivo a ejecutar al intérprete de Python

python hola.py

11

Python para todos

pero vamos a ver como simplificarlo ain mds.

Si utilizas Windows los archivos .py ya estardn asociados al intérprete
de Python, por lo que basta hacer doble clic sobre el archivo para eje-
cutar el programa. Sin embargo como este programa no hace mas que
imprimir un texto en la consola, la ejecucién es demasiado rdpida para
poder verlo si quiera. Para remediarlo, vamos a afiadir una nueva linea
que espere la entrada de datos por parte del usuario.

print "Hola Mundo"
raw_input()

De esta forma se mostrard una consola con el texto Hola Mundo hasta
que pulsemos Enter.

Si utilizas Linux (u otro Unix) para conseguir este comportamiento, es
decir, para que el sistema operativo abra el archivo .py con el intérprete
adecuado, es necesario afadir una nueva linea al principio del archivo:

#!/usr/bin/python
print "Hola Mundo"
raw_input()

A esta linea se le conoce en el mundo Unix como shebang, hashbang

o sharpbang. El par de caracteres #! indica al sistema operativo que
dicho script se debe ejecutar utilizando el intérprete especificado a
continuacién. De esto se desprende, evidentemente, que si esta no es la
ruta en la que estd instalado nuestro intérprete de Python, es necesario
cambiarla.

Otra opcién es utilizar el programa env (de environment, entorno)
para preguntar al sistema por la ruta al intérprete de Python, de forma
que nuestros usuarios no tengan ningun problema si se diera el caso de
que el programa no estuviera instalado en dicha ruta:

#!/usr/bin/env python
print "Hola Mundo"
raw_input()

Por supuesto ademis de afiadir el shebang, tendremos que dar permi-
sos de ejecucién al programa.

12

Mi primer programa en Python

chmod +x hola.py

Y listo, si hacemos doble clic el programa se ejecutard, mostrando una
consola con el texto Hola Mundo, como en el caso de Windows.

También podriamos correr el programa desde la consola como si trata-
ra de un ejecutable cualquiera:

./hola.py

13

TIPOS BASICOS

En Python los tipos basicos se dividen en:

* Numeros, como pueden ser 3 (entero), 15.57 (de coma flotante) o
7 + 5j (complejos)

* Cadenas de texto, como "Hola Mundo"

+ Valores booleanos: True (cierto) y False (falso).

Vamos a crear un par de variables a modo de ejemplo. Una de tipo
cadena y una de tipo entero:

esto es una cadena
= "Hola Mundo"

(@]

y esto es un entero
e =23

podemos comprobarlo con la funcion type
type(c)
type(e)

Como veis en Python, a diferencia de muchos otros lenguajes, no se
declara el tipo de la variable al crearla. En Java, por ejemplo, escribiria-
mos:

String ¢ = "Hola Mundo";
int e = 23;

Este pequefio ejemplo también nos ha servido para presentar los
comentarios inline en Python: cadenas de texto que comienzan con el
cardcter # y que Python ignora totalmente. Hay mas tipos de comenta-
rios, de los que hablaremos mds adelante.

14

Tipos basicos

Numeros

Como deciamos, en Python se pueden representar nimeros enteros,
reales y complejos.

Enteros

Los nimeros enteros son aquellos nimeros positivos o negativos que
no tienen decimales (ademis del cero). En Python se pueden repre-
sentar mediante el tipo int (de integer, entero) o el tipo long (largo).
La tnica diferencia es que el tipo long permite almacenar nimeros
mis grandes. Es aconsejable no utilizar el tipo long a menos que sea
necesario, para no malgastar memoria.

El tipo int de Python se implementa a bajo nivel mediante un tipo
long de C.Y dado que Python utiliza C por debajo, como C, y a dife-
rencia de Java, el rango de los valores que puede representar depende
de la plataforma.

En la mayor parte de las maquinas el long de C se almacena utilizando
32 bits, es decir, mediante el uso de una variable de tipo int de Python
podemos almacenar nimeros de -2*' a 2* - 1, 0 lo que es lo mismo, de

-2.147.483.648 a 2.147.483.647. En plataformas de 64 bits, el rango es
de -9.223.372.036.854.775.808 hasta 9.223.372.036.854.775.807.

El tipo 1ong de Python permite almacenar nimeros de cualquier preci-
si6n, estando limitados solo por la memoria disponible en la maquina.

Al asignar un nimero a una variable esta pasard a tener tipo int, a
menos que el nimero sea tan grande como para requerir el uso del tipo
long.

type(entero) daria int
entero = 23

También podemos indicar a Python que un nimero se almacene usan-
do long afiadiendo una L al final:

type(entero) daria long
entero = 23L

15

Python para todos

El literal que se asigna a la variable también se puede expresar como
un octal, anteponiendo un cero:

027 octal = 23 en base 10
entero = 027

o bien en hexadecimal, anteponiendo un Ox:

0x17 hexadecimal = 23 en base 10
entero = 0x17

Reales

Los nimeros reales son los que tienen decimales. En Python se expre-
san mediante el tipo float. En otros lenguajes de programacién, como
C, tenemos también el tipo double, similar a float pero de mayor
precisién (double = doble precisién). Python, sin embargo, implementa
su tipo float a bajo nivel mediante una variable de tipo double de C,
es decir, utilizando 64 bits, luego en Python siempre se utiliza doble
precisién, y en concreto se sigue el estindar IEEE 754: 1 bit para el
signo, 11 para el exponente, y 52 para la mantisa. Esto significa que los
valores que podemos representar van desde +2,2250738585072020 x
10-308 hasta +1,7976931348623157x10308.

La mayor parte de los lenguajes de programacién siguen el mismo
esquema para la representacion interna. Pero como muchos sabréis
esta tiene sus limitaciones, impuestas por el hardware. Por eso desde
Python 2.4 contamos también con un nuevo tipo Decimal, para el
caso de que se necesite representar fracciones de forma mas precisa.
Sin embargo este tipo estd fuera del alcance de este tutorial, y sélo es
necesario para el dmbito de la programacion cientifica y otros rela-
cionados. Para aplicaciones normales podeis utilizar el tipo float sin
miedo, como ha venido haciéndose desde hace afos, aunque teniendo
en cuenta que los nimeros en coma flotante no son precisos (ni en este
ni en otros lenguajes de programacién).

Para representar un nimero real en Python se escribe primero la parte
entera, seguido de un punto y por tltimo la parte decimal.

real = 0.2703
16

Tipos basicos

También se puede utilizar notacién cientifica, y afiadir una e (de expo-
nente) para indicar un exponente en base 10. Por ejemplo:

real = 0.7e-3

serfa equivalente a 0.1 x 10-3 = 0.1 x 0.001 = 0.0001

Complejos

Los nimeros complejos son aquellos que tienen parte imaginaria. Si
no conocias de su existencia, es mas que probable que nunca lo vayas a
necesitar, por lo que puedes saltarte este apartado tranquilamente. De
hecho la mayor parte de lenguajes de programacién carecen de este
tipo, aunque sea muy utilizado por ingenieros y cientificos en general.

En el caso de que necesitéis utilizar nimeros complejos, o simplemen-
te tengdis curiosidad, os diré que este tipo, llamado complex en Python,
también se almacena usando coma flotante, debido a que estos nime-
ros son una extensién de los nimeros reales. En concreto se almacena
en una estructura de C, compuesta por dos variables de tipo double,
sirviendo una de ellas para almacenar la parte real y la otra para la
parte imaginaria.

Los nimeros complejos en Python se representan de la siguiente
forma:

complejo = 2.1 + 7.8j

Operadores

Veamos ahora qué podemos hacer con nuestros nimeros usando los
operadores por defecto. Para operaciones mas complejas podemos
recurrir al médulo math.

Operadores aritméticos

Operador | Descripciéon | Ejemplo
3+ 2 #ressS
4 -7 #res -3

+ Suma r

- Resta r

17

Python para todos

Operador | Descripcién | Ejemplo

- Negacion r=-7 #res -7

* Multiplicacién [r =2 * 6 #res 12
ok Exponente r=2%*6 #res64
/ Divisién r=3.5/2 #res1.75
// Divisién entera [r = 3.5 // 2 # r es 1.0
% Moédulo r=7%2 #roes |

Puede que tengdis dudas sobre cémo funciona el operador de médulo,
y cudl es la diferencia entre divisién y divisién entera.

El operador de médulo no hace otra cosa que devolvernos el resto de
la divisién entre los dos operandos. En el ejemplo, 7/2 seria 3, con 1 de
resto, luego el médulo es 1.

La diferencia entre divisién y divisién entera no es otra que la que
indica su nombre. En la divisién el resultado que se devuelve es un
numero real, mientras que en la divisién entera el resultado que se
devuelve es solo la parte entera.

No obstante hay que tener en cuenta que si utilizamos dos operandos
enteros, Python determinard que queremos que la variable resultado
también sea un entero, por lo que el resultado de, por ejemplo,3 / 2y
3 // 2 seria el mismo: 1.

Si quisiéramos obtener los decimales necesitariamos que al menos uno
de los operandos fuera un nimero real, bien indicando los decimales

r=3.07/2
o bien utilizando la funcién float (no es necesario que sepais lo que

significa el término funcién, ni que recordeis esta forma, lo veremos un
poco mis adelante):

r = float(3) / 2
Esto es asi porque cuando se mezclan tipos de nimeros, Python con-

18

Tipos basicos

vierte todos los operandos al tipo mas complejo de entre los tipos de
los operandos.

Operadores a nivel de bit

Si no conocéis estos operadores es poco probable que vaydis a necesi-
tarlos, por lo que podéis obviar esta parte. Si atn asi tenéis curiosidad
os diré que estos son operadores que actdan sobre las representaciones
en binario de los operandos.

Por ejemplo, si veis una operacién como 3 & 2,lo que estais viendo es
un and bit a bit entre los nimeros binarios 11 y 10 (las representacio-
nes en binario de 3 y 2).

El operador and (&), del inglés “y”, devuelve 1 si el primer bit operando
es 1y el segundo bit operando es 1. Se devuelve 0 en caso contrario.

El resultado de aplicar and bit a bit a 11 y 10 seria entonces el nimero
binario 10, o lo que es lo mismo, 2 en decimal (el primer digito es 1
para ambas cifras, mientras que el segundo es 1 sélo para una de ellas).
El operador or (1), del inglés “0”, devuelve 1 si el primer operando es 1
o ¢l segundo operando es 1. Para el resto de casos se devuelve 0.

El operador xor u or exclusivo (A) devuelve 1 si uno de los operandos
es 1y el otro no lo es.

El operador not (~), del inglés “no”, sirve para negar uno a uno cada
bit; es decir, si el operando es 0, cambia a 1y si es 1, cambia a 0.

Por ultimo los operadores de desplazamiento (<< y >>) sirven para
desplazar los bits n posiciones hacia la izquierda o la derecha.

Operador | Descripcion Ejemplo

& and r=38&2 #res?2
| or r=312 #res3
A xor r=3A2 #res|
~ not r =-~3 # res -4

19

Python para todos

<< Desplazamiento izq. | r = 3 << 1 # r es 6
>> Desplazamiento der. | r = 3 >> 1 # r es 1
Cadenas

Las cadenas no son mds que texto encerrado entre comillas simples
("cadena') o dobles ("cadena"). Dentro de las comillas se pueden
afiadir caracteres especiales escapandolos con \, como \n, el caricter de
nueva linea, o \t, el de tabulacién.

Una cadena puede estar precedida por el cardcter u o el carécter r, los
cuales indican, respectivamente, que se trata de una cadena que utiliza
codificacién Unicode y una cadena raw (del inglés, cruda). Las cade-
nas raw se distinguen de las normales en que los caracteres escapados
mediante la barra invertida (\) no se sustituyen por sus contrapartidas.
Esto es especialmente util, por ejemplo, para las expresiones regulares,
como veremos en el capitulo correspondiente.

unicode = u"aée"
raw = r"\n"

También es posible encerrar una cadena entre triples comillas (simples
o dobles). De esta forma podremos escribir el texto en varias lineas, y
al imprimir la cadena, se respetardn los saltos de linea que introdujimos
sin tener que recurrir al cardcter \n, asi como las comillas sin tener que
escaparlas.

Las cadenas también admiten operadores como +, que funciona reali-
zando una concatenacién de las cadenas utilizadas como operandos y
*,en la que se repite la cadena tantas veces como lo indique el nimero
utilizado como segundo operando.

a = "uno
b Ildosll
c=a+b#c es "unodos"
c=a?*3#c es "unounouno"
Booleanos

20

Tipos basicos

Como deciamos al comienzo del capitulo una variable de tipo boolea-
no s6lo puede tener dos valores: True (cierto) y False (falso). Estos
valores son especialmente importantes para las expresiones condicio-
nales y los bucles, como veremos mds adelante.

En realidad el tipo bool (el tipo de los booleanos) es una subclase del
tipo int. Puede que esto no tenga mucho sentido para ti si no conoces
los términos de la orientacién a objetos, que veremos mids adelantes,
aunque tampoco es nada importante.

Estos son los distintos tipos de operadores con los que podemos traba-
jar con valores booleanos, los llamados operadores 1égicos o condicio-
nales:

Operador | Descripcion Ejemplo

and ¢se cumple ayb? |r = True and False # r es
False

or ¢secumpleaob? | r = True or False # r es
True

not No a r = not True # r es
False

Los valores booleanos son ademas el resultado de expresiones que
utilizan operadores relacionales (comparaciones entre valores):

Operador | Descripciéon Ejemplo

== ¢son iguales a y b? r=5==3#res
False

I= ¢son distintos a y b? r=51!=34#res
True

< gesamenorqueb? r=5<3 #res
False

> ¢es a mayor que b? r=5>3 #res
True

<= ¢esamenor o igual queb? |r = 5 <=5 # r es
True

>= ¢es amayor o igual que b? |r = 5 >= 3 # r es
True

21

COLECCIONES

En el capitulo anterior vimos algunos tipos bésicos, como los nimeros,
las cadenas de texto y los booleanos. En esta leccién veremos algunos
tipos de colecciones de datos: listas, tuplas y diccionarios.

Listas

La lista es un tipo de coleccién ordenada. Seria equivalente a lo que en
otros lenguajes se conoce por arrays, o vectores.

Las listas pueden contener cualquier tipo de dato: nimeros, cadenas,
booleanos, ...y también listas.

Crear una lista es tan sencillo como indicar entre corchetes, y separa-
dos por comas, los valores que queremos incluir en la lista:

1 = [22, True, "una lista", [1, 2]]

Podemos acceder a cada uno de los elementos de la lista escribiendo el
nombre de la lista e indicando el indice del elemento entre corchetes.
Ten en cuenta sin embargo que el indice del primer elemento de la
lista es 0,y no 1:

1 =[11, False]
mi_var = 1[0] # mi_var vale 11

Si queremos acceder a un elemento de una lista incluida dentro de otra
lista tendremos que utilizar dos veces este operador, primero para in-
dicar a qué posicién de la lista exterior queremos acceder, y el segundo
para seleccionar el elemento de la lista interior:

1 = ["una lista", [1, 2]]

22

Colecciones

mi_var = 1[1][0] # mi_var vale 1

También podemos utilizar este operador para modificar un elemento
de la lista si lo colocamos en la parte izquierda de una asignacién:

1 = [22, True]
Ahora 1 valdra [99, True]
1[0] = 99

El uso de los corchetes para acceder y modificar los elementos de una
lista es comun en muchos lenguajes, pero Python nos depara varias
sorpresas muy agradables.

Una curiosidad sobre el operador [] de Python es que podemos utili-
zar también nimeros negativos. Si se utiliza un nimero negativo como
indice, esto se traduce en que el indice empieza a contar desde el final,
hacia la izquierda; es decir, con [-1] accederiamos al dltimo elemento
de la lista, con [-2] al penultimo, con [-3], al antependltimo, y asi
sucesivamente.

Otra cosa inusual es lo que en Python se conoce como s/icing o parti-
cionado, y que consiste en ampliar este mecanismo para permitir selec-
cionar porciones de la lista. Si en lugar de un nimero escribimos dos
numeros inicio y fin separados por dos puntos (inicio: fin) Python
interpretard que queremos una lista que vaya desde la posicién inicio
a la posicién fin, sin incluir este ltimo. Si escribimos tres nimeros
(inicio:fin:salto) en lugar de dos, el tercero se utiliza para determi-
nar cada cuantas posiciones afiadir un elemento a la lista.

1 =099, True, "una lista", [1, 2]]
mi_var = 1[0:2] # mi_var vale [99, True]
mi_var = 1[0:4:2] # mi_var vale [99, "una lista"]

Los nimeros negativos también se pueden utilizar en un slicing, con el
mismo comportamiento que se comenté anteriormente.

Hay que mencionar asi mismo que no es necesario indicar el principio
y el final del slicing, sino que, si estos se omiten, se usardn por defecto
las posiciones de inicio y fin de la lista, respectivamente:

1 =099, True, "una lista"]
23

Python para todos

mi_var = 1[1:] # mi_var vale [True, "una lista"]
mi_var = 1[:2] # mi_var vale [99, True]

mi_var = 1[:] # mi_var vale [99, True, "una lista"]
mi_var = 1[::2] # mi_var vale [99, "una lista"]

También podemos utilizar este mecanismo para modificar la lista:

99, True, "una lista", [1, 2]]
2] = [0 1] # 1 vale [0, 1, "una lista", [1, 2]]

pudiendo incluso modificar el tamafio de la lista si la lista de la parte
derecha de la asignacién tiene un tamafio menor o mayor que el de la
seleccion de la parte izquierda de la asignacién:

1[0:2] = [False] # 1 vale [False, "una lista", [1, 2]]

En todo caso las listas ofrecen mecanismos mds cémodos para ser mo-
dificadas a través de las funciones de la clase correspondiente, aunque
no veremos estos mecanismos hasta més adelante, después de explicar
lo que son las clases, los objetos y las funciones.

Tuplas

Todo lo que hemos explicado sobre las listas se aplica también a las
tuplas, a excepcion de la forma de definirla, para lo que se utilizan
paréntesis en lugar de corchetes.

t = (1, 2, True, "python")

En realidad el constructor de la tupla es la coma, no el paréntesis, pero
el intérprete muestra los paréntesis, y nosotros deberiamos utilizarlos,

por claridad.

>>>t =1, 2, 3
>>> type(t)
type "tuple"

Ademds hay que tener en cuenta que es necesario afiadir una coma
para tuplas de un solo elemento, para diferenciarlo de un elemento
entre paréntesis.

>>> t = (1)
24

Colecciones

>>> type(t)
type "int"

>>> t = (1,)
>>> type(t)
type "tuple"

Para referirnos a elementos de una tupla, como en una lista, se usa el
operador []:

t[0] # mi_var es 1
t[0:2] # mi_var es (1, 2)

mi_var
mi_var

Podemos utilizar el operador [] debido a que las tuplas, al igual que
las listas, forman parte de un tipo de objetos llamados secuencias.
Permitirme un pequefio inciso para indicaros que las cadenas de texto
también son secuencias, por lo que no os extrafiard que podamos hacer
cOsas como estas:

¢ = "hola mundo"
c[0] #nh

c[5:] # mundo
c[::3] # hauo

Volviendo al tema de las tuplas, su diferencia con las listas estriba en
que las tuplas no poseen estos mecanismos de modificacién a través

de funciones tan utiles de los que habldbamos al final de la anterior

seccion.

Ademds son inmutables, es decir, sus valores no se pueden modificar
una vez creada; y tienen un tamaio fijo.

A cambio de estas limitaciones las tuplas son mas “ligeras” que las
listas, por lo que si el uso que le vamos a dar a una coleccién es muy
basico, puedes utilizar tuplas en lugar de listas y ahorrar memoria.

Diccionarios

Los diccionarios, también llamados matrices asociativas, deben su
nombre a que son colecciones que relacionan una clave y un valor. Por
ejemplo, veamos un diccionario de peliculas y directores:

d = {"Love Actually ": "Richard Curtis",
25

Python para todos

"Kill Bill": "Tarantino",
"Amélie": "Jean-Pierre Jeunet"}

El primer valor se trata de la clave y el segundo del valor asociado

ala clave. Como clave podemos utilizar cualquier valor inmutable:
podriamos usar nimeros, cadenas, booleanos, tuplas, ... pero no listas

o diccionarios, dado que son mutables. Esto es asi porque los diccio-
narios se implementan como tablas hash, y a la hora de introducir un
nuevo par clave-valor en el diccionario se calcula el hash de la clave
para después poder encontrar la entrada correspondiente rdpidamente.
Si se modificara el objeto clave después de haber sido introducido en el
diccionario, evidentemente, su hash también cambiaria y no podria ser
encontrado.

La diferencia principal entre los diccionarios y las listas o las tuplas es
que a los valores almacenados en un diccionario se les accede no por su
indice, porque de hecho no tienen orden, sino por su clave, utilizando
de nuevo el operador [].

d["Love Actually "] # devuelve "Richard Curtis"

Al igual que en listas y tuplas también se puede utilizar este operador
para reasignar valores.

d["Kill Bill"] = "Quentin Tarantino"
Sin embargo en este caso no se puede utilizar slicing, entre otras cosas

porque los diccionarios no son secuencias, si no mappings (mapeados,
asociaciones).

26

CONTROL DE FLUJO

En esta leccién vamos a ver los condicionales y los bucles.

Sentencias condicionales

Si un programa no fuera mds que una lista de érdenes a ejecutar de
forma secuencial, una por una, no tendria mucha utilidad. Los con-
dicionales nos permiten comprobar condiciones y hacer que nuestro
programa se comporte de una forma u otra, que ejecute un fragmento
de cédigo u otro, dependiendo de esta condicion.

Aqui es donde cobran su importancia el tipo booleano y los operadores
légicos y relacionales que aprendimos en el capitulo sobre los tipos

basicos de Python.

if

La forma mids simple de un estamento condicional es un if (del inglés
si) seguido de la condicién a evaluar, dos puntos (:) y en la siguiente
linea e indentado, el c6digo a ejecutar en caso de que se cumpla dicha
condicién.

fav = "mundogeek.net"
si (if) fav es igual a "mundogeek.net"
if fav == "mundogeek.net":

print "Tienes buen gusto!"

print "Gracias"

Como veis es bastante sencillo.

Eso si, aseguraros de que indentiis el cédigo tal cual se ha hecho en el
ejemplo, es decir, aseguraros de pulsar Tabulacién antes de las dos 6r-
denes print, dado que esta es la forma de Python de saber que vuestra
intencién es la de que los dos print se ejecuten sélo en el caso de que

27

Python para todos

se cumpla la condicién, y no la de que se imprima la primera cadena si
se cumple la condicién y la otra siempre, cosa que se expresaria asi:

if fav == "mundogeek.net":
print "Tienes buen gusto!"
print "Gracias"

En otros lenguajes de programacion los bloques de cédigo se determi-
nan encerrdndolos entre llaves, y el indentarlos no se trata mds que de
una buena prictica para que sea mds sencillo seguir el flujo del progra-
ma con un solo golpe de vista. Por ejemplo, el c6digo anterior expresa-
do en Java seria algo asi:

String fav = "mundogeek.net";

if (fav.equals("mundogeek.net"){
System.out.println("Tienes buen gusto!");
System.out.println("Gracias");

Sin embargo, como ya hemos comentado, en Python se trata de una
obligacién, y no de una eleccién. De esta forma se obliga a los progra-
madores a indentar su c6digo para que sea mds sencillo de leer :)

if ... else

Vamos a ver ahora un condicional algo mas complicado. ;Qué haria-
mos si quisiéramos que se ejecutaran unas ciertas 6rdenes en el caso de
que la condicién no se cumpliera? Sin duda podriamos afiadir otro if
que tuviera como condicién la negacién del primero:

if fav == "mundogeek.net":
print "Tienes buen gusto!"
print "Gracias"

if fav != "mundogeek.net":
print "Vaya, que lastima"

pero el condicional tiene una segunda construccién mucho mis util:

if fav == "mundogeek.net":
print "Tienes buen gusto!"
print "Gracias"

else:
print "Vaya, que lastima"

28

Control de flujo

Vemos que la segunda condicién se puede sustituir con un else (del
inglés: si no, en caso contrario). Si leemos el c6digo vemos que tiene
bastante sentido: “si fav es igual a mundogeek.net, imprime esto y esto,
si no, imprime esto otro”.

if ... elif ... elif ... else

Todavia queda una construccién mds que ver, que es la que hace uso
del elif.

if numero < 0:

print "Negativo"
elif numero > 0:

print "Positivo"
else:

print "Cero"

elif es una contraccion de else if, por lo tanto elif numero > 0 puede
leerse como “si no, si numero es mayor que 0”. Es decir, primero se
evalda la condicién del if. Si es cierta, se ejecuta su cédigo y se con-
tinda ejecutando el cédigo posterior al condicional; si no se cumple,

se evalia la condicién del elif. Si se cumple la condicién del elif

se ejecuta su cédigo y se continua ejecutando el cédigo posterior al
condicional; si no se cumple y hay mds de un elif se continda con el
siguiente en orden de aparicion. Si no se cumple la condicién del if ni
de ninguno de los elif, se ejecuta el cédigo del else.

Aif Celse B

También existe una construccién similar al operador ? de otros lengua-
jes, que no es mds que una forma compacta de expresar un if else. En
esta construccidn se evalda el predicado C y se devuelve A si se cumple
o B sino se cumple: 4 if C else B.Veamos un ejemplo:

var = "par" if (num % 2 == 0) else "impar"

Y eso es todo. Si conocéis otros lenguajes de programacién puede que
esperarais que os hablara ahora del switch, pero en Python no existe
esta construccién, que podria emularse con un simple diccionario, asi
que pasemos directamente a los bucles.

29

Python para todos

Bucles

Mientras que los condicionales nos permiten ejecutar distintos frag-
mentos de cédigo dependiendo de ciertas condiciones, los bucles nos
permiten ejecutar un mismo fragmento de cédigo un cierto nimero de
veces, mientras se cumpla una determinada condicién.

while

El bucle while (mientras) ejecuta un fragmento de c6digo mientras se
cumpla una condicién.

edad = 0
while edad < 18:
edad = edad + 1
print "Felicidades, tienes " + str(edad)

La variable edad comienza valiendo 0. Como la condicién de que edad
es menor que 18 es cierta (0 es menor que 18), se entra en el bucle.

Se aumenta edad en 1 y se imprime el mensaje informando de que

el usuario ha cumplido un afio. Recordad que el operador + para las
cadenas funciona concatenando ambas cadenas. Es necesario utilizar
la funcién str (de string, cadena) para crear una cadena a partir del
numero, dado que no podemos concatenar nimeros y cadenas, pero ya
comentaremos esto y mucho mds en préximos capitulos.

Ahora se vuelve a evaluar la condicién, y 1 sigue siendo menor que 18,
por lo que se vuelve a ejecutar el cédigo que aumenta la edad en un
aflo e imprime la edad en la pantalla. E] bucle continuari ejecutindose
hasta que edad sea igual a 18, momento en el cual la condicién dejard
de cumplirse y el programa continuaria ejecutando las instrucciones
siguientes al bucle.

Ahora imaginemos que se nos olvidara escribir la instruccién que
aumenta la edad. En ese caso nunca se llegaria a la condicién de que
edad fuese igual o mayor que 18, siempre seria 0, y el bucle continuaria
indefinidamente escribiendo en pantalla Has cumplido 0.

Esto es lo que se conoce como un bucle infinito.

30

Control de flujo

Sin embargo hay situaciones en las que un bucle infinito es util. Por
ejemplo, veamos un pequefio programa que repite todo lo que el usua-
rio diga hasta que escriba adios.

while True:
entrada = raw_input("> ")
if entrada == "adios":
break
else:

print entrada

Para obtener lo que el usuario escriba en pantalla utilizamos la funcién
raw_input. No es necesario que sepais qué es una funcién ni cémo
funciona exactamente, simplemente aceptad por ahora que en cada
iteracion del bucle la variable entrada contendrd lo que el usuario
escribi6 hasta pulsar Enter.

Comprobamos entonces si lo que escribié el usuario fue adios, en cuyo
caso se ejecuta la orden break o si era cualquier otra cosa, en cuyo caso
se imprime en pantalla lo que el usuario escribio.

La palabra clave break (romper) sale del bucle en el que estamos.

Este bucle se podria haber escrito también, no obstante, de la siguiente
forma:

salir = False
while not salir:
entrada = raw_input()
if entrada == "adios":
salir = True
else:
print entrada

pero nos ha servido para ver cémo funciona break.

Otra palabra clave que nos podemos encontrar dentro de los bucles es
continue (continuar). Como habréis adivinado no hace otra cosa que
pasar directamente a la siguiente iteracién del bucle.

edad = 0
while edad < 18:

31

Python para todos

edad = edad + 1
if edad % 2 == 0:
continue
print "Felicidades, tienes " + str(edad)

Como veis esta es una pequefia modificacién de nuestro programa de
felicitaciones. En esta ocasién hemos afiadido un if que comprueba si
la edad es par, en cuyo caso saltamos a la préxima iteracién en lugar de
imprimir el mensaje. Es decir, con esta modificacién el programa sélo
imprimiria felicitaciones cuando la edad fuera impar.

for ... in

A los que hayiis tenido experiencia previa con segun que lenguajes este
bucle os va a sorprender gratamente. En Python for se utiliza como
una forma genérica de iterar sobre una secuencia. Y como tal intenta
facilitar su uso para este fin.

Este es el aspecto de un bucle for en Python:

secuencia = ["uno", "dos", "tres"]
for elemento in secuencia:
print elemento

Como hemos dicho los for se utilizan en Python para recorrer secuen-
cias, por lo que vamos a utilizar un tipo secuencia, como es la lista, para
nuestro ejemplo.

Leamos la cabecera del bucle como si de lenguaje natural se tratara:
“para cada elemento en secuencia”. Y esto es exactamente lo que hace
el bucle: para cada elemento que tengamos en la secuencia, ejecuta
estas lineas de cédigo.

Lo que hace la cabecera del bucle es obtener el siguiente elemento de
la secuencia secuencia y almacenarlo en una variable de nombre ele-
mento. Por esta razén en la primera iteracién del bucle elemento valdra
"uno", en la segunda "dos",y en la tercera "tres".

Fécil y sencillo.

En C o C++, por ejemplo, lo que habriamos hecho seria iterar sobre las

32

Control de flujo

posiciones, y no sobre los elementos:

int mi_array[] = {1, 2, 3, 4, 5};

int 1;

for(i = 0; 1 < 5; i++) {
printf("%d\n", mi_array[i]);

Es decir, tendriamos un bucle for que fuera aumentando una variable
i en cada iteracién, desde 0 al tamafo de la secuencia, y utilizariamos
esta variable a modo de indice para obtener cada elemento e imprimir-
lo.

Como veis el enfoque de Python es mas natural e intuitivo.

Pero, ;qué ocurre si quisiéramos utilizar el for como si estuviéramos en
C o en Java, por ejemplo, para imprimir los nimeros de 30 a 50? No os
preocupéis, porque no necesitariais crear una lista y afiadir uno a uno
los nimeros del 30 al 50. Python proporciona una funcién llamada
range (rango) que permite generar una lista que vaya desde el primer
numero que le indiquemos al segundo. Lo veremos después de ver al
fin a qué se refiere ese término tan recurrente: las funciones.

33

FUNCIONES

Una funcién es un fragmento de cédigo con un nombre asociado que
realiza una serie de tareas y devuelve un valor. A los fragmentos de
c6digo que tienen un nombre asociado y no devuelven valores se les
suele llamar procedimientos. En Python no existen los procedimien-
tos, ya que cuando el programador no especifica un valor de retorno la
funcién devuelve el valor None (nada), equivalente al null de Java.

Ademis de ayudarnos a programar y depurar dividiendo el programa
en partes las funciones también permiten reutilizar cédigo.

En Python las funciones se declaran de la siguiente forma:

def mi_funcion(paraml, param?2):
print paraml
print param2

Es decir, la palabra clave def seguida del nombre de la funcién y entre
paréntesis los argumentos separados por comas. A continuacion, en
otra linea, indentado y después de los dos puntos tendriamos las lineas
de cédigo que conforman el c6digo a ejecutar por la funcién.

También podemos encontrarnos con una cadena de texto como
primera linea del cuerpo de la funcién. Estas cadenas se conocen con
el nombre de docstring (cadena de documentacién) y sirven, como su
nombre indica, a modo de documentacién de la funcién.

def mi_funcion(paraml, param?2):
"""Esta funcion imprime los dos valores pasados
como parametros"""
print paraml
print param2

Esto es lo que imprime el opeardor ? de iPython o la funcién help

34

Funciones

del lenguaje para proporcionar una ayuda sobre el uso y utilidad de
las funciones. Todos los objetos pueden tener docstrings, no solo las
funciones, como veremos mis adelante.

Volviendo a la declaracién de funciones, es importante aclarar que

al declarar la funcién lo Gnico que hacemos es asociar un nombre al
fragmento de c6digo que conforma la funcién, de forma que podamos
ejecutar dicho cédigo mas tarde referenciandolo por su nombre. Es
decir, a la hora de escribir estas lineas no se ejecuta la funcién. Para
llamar a la funcién (ejecutar su c6digo) se escribiria:

mi_funcion("hola", 2)

Es decir, el nombre de la funcién a la que queremos llamar seguido de
los valores que queramos pasar como pardmetros entre paréntesis. La
asociacién de los pardmetros y los valores pasados a la funcién se hace
normalmente de izquierda a derecha: como a param1 le hemos dado un
valor "hola" y param2 vale 2, mi_funcion imprimiria hola en una linea,
y a continuacién 2.

Sin embargo también es posible modificar el orden de los parimetros
si indicamos el nombre del pardmetro al que asociar el valor a la hora
de llamar a la funcién:

mi_funcion(param2 = 2, paraml = "hola")

El nimero de valores que se pasan como pardmetro al llamar a la fun-
cién tiene que coincidir con el nimero de parimetros que la funcién
acepta segun la declaracién de la funcién. En caso contrario Python se
quejard:

>>> mi_funcion("hola")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: mi_funcion() takes exactly 2 arguments (1 given)

También es posible, no obstante, definir funciones con un nimero va-
riable de argumentos, o bien asignar valores por defecto a los parime-
tros para el caso de que no se indique ningtn valor para ese pardmetro
al llamar a la funcién.

35

Python para todos

Los valores por defecto para los parimetros se definen situando un
signo igual después del nombre del pardmetro y a continuacién el valor
por defecto:

def imprimir(texto, veces = 1):
print veces * texto

En el ejemplo anterior si no indicamos un valor para el segundo

]
pardmetro se imprimird una sola vez la cadena que le pasamos como
primer pardmetro:

>>> imprimir("hola")
hola

si se le indica otro valor, serd este el que se utilice:

>>> imprimir("hola", 2)
holahola

Para definir funciones con un nimero variable de argumentos coloca-
mos un ultimo pardmetro para la funcién cuyo nombre debe preceder-
se de un signo *:

def varios(paraml, param2, *otros):
for val in otros:
print otros

varios(1, 2)
varios(1, 2, 3)
varios(1, 2, 3, 4)

Esta sintaxis funciona creando una tupla (de nombre otros en el
ejemplo) en la que se almacenan los valores de todos los pardmetros
extra pasados como argumento. Para la primera llamada, varios(1, 2),
la tupla otros estaria vacia dado que no se han pasado mas pardmetros
que los dos definidos por defecto, por lo tanto no se imprimiria nada.
En la segunda llamada otros valdria (3,),y en la tercera (3, 4).

También se puede preceder el nombre del ultimo parimetro con **, en
cuyo caso en lugar de una tupla se utilizaria un diccionario. Las claves
de este diccionario serian los nombres de los pardmetros indicados al

36

Funciones

llamar a la funcién y los valores del diccionario, los valores asociados a
estos pardmetros.

En el siguiente ejemplo se utiliza la funcién items de los diccionarios

J ;
que devuelve una lista con sus elementos, para imprimir los pardmetros
que contiene el diccionario.

def varios(paraml, param2, **otros):
for i in otros.items():
print i

varios(1, 2, tercero = 3)

Los que conozciis algin otro lenguaje de programacion os estaréis
preguntando si en Python al pasar una variable como argumento de
una funcién estas se pasan por referencia o por valor. En el paso por
referencia lo que se pasa como argumento es una referencia o puntero
a la variable, es decir, la direccién de memoria en la que se encuentra el
contenido de la variable, y no el contenido en si. En el paso por valor,
por el contrario, lo que se pasa como argumento es el valor que conte-
nia la variable.

La diferencia entre ambos estriba en que en el paso por valor los
cambios que se hagan sobre el pardmetro no se ven fuera de la fun-
cién, dado que los argumentos de la funcién son variables locales a la
funcién que contienen los valores indicados por las variables que se
pasaron como argumento. Es decir, en realidad lo que se le pasa a la
funcién son copias de los valores y no las variables en si.

Si quisiéramos modificar el valor de uno de los argumentos y que estos
cambios se reflejaran fuera de la funcién tendriamos que pasar el para-
metro por referencia.

En C los argumentos de las funciones se pasan por valor, aunque se
puede simular el paso por referencia usando punteros. En Java también
se usa paso por valor, aunque para las variables que son objetos lo que
se hace es pasar por valor la referencia al objeto, por lo que en realidad
parece paso por referencia.

En Python también se utiliza el paso por valor de referencias a objetos,

37

Python para todos

como en Java, aunque en el caso de Python, a diferencia de Java, todo
es un objeto (para ser exactos lo que ocurre en realidad es que al objeto
se le asigna otra etiqueta o nombre en el espacio de nombres local de la
funcién).

Sin embargo no todos los cambios que hagamos a los pardmetros
dentro de una funcién Python se reflejardn fuera de esta, ya que hay
que tener en cuenta que en Python existen objetos inmutables, como
las tuplas, por lo que si intentiramos modificar una tupla pasada como
parametro lo que ocurriria en realidad es que se crearia una nueva ins-
tancia, por lo que los cambios no se verian fuera de la funcién.

Veamos un pequefio programa para demostrarlo:

def f(x, y):
X =Xx+3
y.append(23)
print x, y

22
y = [22]
t(x, y)
print x, y

X

El resultado de la ejecucién de este programa seria

25 [22, 23]
22 [22, 23]

Como vemos la variable x no conserva los cambios una vez salimos de
la funcién porque los enteros son inmutables en Python. Sin embargo
la variable y si los conserva, porque las listas son mutables.

En resumen: los valores mutables se comportan como paso por refe-
rencia, y los inmutables como paso por valor.

Con esto terminamos todo lo relacionado con los pardmetros de las
funciones. Veamos por ultimo cémo devolver valores, para lo que se
utiliza la palabra clave return:

def sumar(x, y):
return x + vy

38

Funciones

print sumar(3, 2)

Como vemos esta funcién tan sencilla no hace otra cosa que sumar los
valores pasados como pardmetro y devolver el resultado como valor de
retorno.

También podriamos pasar varios valores que retornar a return.

def f(x, y):
return x * 2,y * 2

a, b =1(1, 2)
Sin embargo esto no quiere decir que las funciones Python puedan de-
volver varios valores, lo que ocurre en realidad es que Python crea una

tupla al vuelo cuyos elementos son los valores a retornar, y esta Gnica
variable es la que se devuelve.

39

ORIENTACION A
OBJETOS

En el capitulo de introduccién ya comentibamos que Python es un
lenguaje multiparadigma en el se podia trabajar con programacién es-
tructurada, como veniamos haciendo hasta ahora, o con programacién
orientada a objetos o programacién funcional.

La Programacién Orientada a Objetos (POO u OOP segun sus siglas
en inglés) es un paradigma de programacién en el que los conceptos
del mundo real relevantes para nuestro problema se modelan a través
de clases y objetos, y en el que nuestro programa consiste en una serie
de interacciones entre estos objetos.

Clases y objetos

Para entender este paradigma primero tenemos que comprender qué es
una clase y qué es un objeto. Un objeto es una entidad que agrupa un
estado y una funcionalidad relacionadas. El estado del objeto se define
a través de variables llamadas atributos, mientras que la funcionalidad
se modela a través de funciones a las que se les conoce con el nombre
de métodos del objeto.

Un ejemplo de objeto podria ser un coche, en el que tendriamos atri-
butos como la marca, el nimero de puertas o el tipo de carburante y
métodos como arrancar y parar. O bien cualquier otra combinacién de
atributos y métodos segin lo que fuera relevante para nuestro progra-
ma.

Una clase, por otro lado, no es mds que una plantilla genérica a partir

40

Orientacion a objetos

de la cudl instanciar los objetos; plantilla que es la que define qué atri-
butos y métodos tendrin los objetos de esa clase.

Volviendo a nuestro ejemplo: en el mundo real existe un conjunto de
objetos a los que llamamos coches y que tienen un conjunto de atribu-
tos comunes y un comportamiento comun, esto es a lo que llamamos
clase. Sin embargo, mi coche no es igual que el coche de mi vecino, y
aunque pertenecen a la misma clase de objetos, son objetos distintos.

En Python las clases se definen mediante la palabra clave class segui-
da del nombre de la clase, dos puntos (:) y a continuacién, indentado,
el cuerpo de la clase. Como en el caso de las funciones, si la primera
linea del cuerpo se trata de una cadena de texto, esta serd la cadena de
documentacién de la clase o docstring.

class Coche:
"""Abstraccion de los objetos coche.
def __init__(self, gasolina):
self.gasolina = gasolina
print "Tenemos", gasolina, "litros"

nnn

def arrancar(self):
if self.gasolina > 0:
print "Arranca"
else:
print "No arranca"

def conducir(self):
if self.gasolina > 0:
self.gasolina -= 1
print "Quedan", self.gasolina, "litros"
else:
print "No se mueve"

Lo primero que llama la atencién en el ejemplo anterior es el nombre
tan curioso que tiene el método __init__. Este nombre es una conven-
cién y no un capricho. El método __init__, con una doble barra baja al
principio y final del nombre, se ejecuta justo después de crear un nuevo
objeto a partir de la clase, proceso que se conoce con el nombre de
instanciacién. El método __init__ sirve, como sugiere su nombre, para
realizar cualquier proceso de inicializacién que sea necesario.

Como vemos el primer pardmetro de __init__ y del resto de métodos

41

Python para todos

de la clase es siempre self. Esta es una idea inspirada en Modula-3 y
sirve para referirse al objeto actual. Este mecanismo es necesario para
poder acceder a los atributos y métodos del objeto diferenciando, por
ejemplo, una variable local mi_var de un atributo del objeto self.
mi_var.

Si volvemos al método __init__ de nuestra clase Coche veremos cémo
se utiliza self para asignar al atributo gasolina del objeto (self.gaso-
lina) el valor que el programador especificé para el parimetro gasoli-
na. El pardmetro gasolina se destruye al final de la funcién, mientras
que el atributo gasolina se conserva (y puede ser accedido) mientras el
objeto viva.

Para crear un objeto se escribiria el nombre de la clase seguido de cual-
quier pardmetro que sea necesario entre paréntesis. Estos pardmetros
son los que se pasardn al método __init__, que como deciamos es el
método que se llama al instanciar la clase.

mi_coche = Coche(3)

Os preguntareis entonces cémo es posible que a la hora de crear nues-
tro primer objeto pasemos un solo pardmetro a __init__, el nimero

3, cuando la definicién de la funcién indica claramente que precisa de
dos pardmetros (self y gasolina). Esto es asi porque Python pasa el
primer argumento (la referencia al objeto que se crea) automdigicamen-
te.

Ahora que ya hemos creado nuestro objeto, podemos acceder a sus
atributos y métodos mediante la sintaxis objeto.atributo y objeto.
metodo():

>>> print mi_coche.gasolina
3

>>> mi_coche.arrancar()
Arranca

>>> mi_coche.conducir()
Quedan 2 litros

>>> mi_coche.conducir()
Quedan 1 litros

>>> mi_coche.conducir()
Quedan 0 litros

>>> mi_coche.conducir()

42

Orientacion a objetos

No se mueve

>>> mi_coche.arrancar()

No arranca

>>> print mi_coche.gasolina

Como ultimo apunte recordar que en Python, como ya se comentd
en repetidas ocasiones anteriormente, todo son objetos. Las cadenas,
por ejemplo, tienen métodos como upper (), que devuelve el texto en
mayusculas o count(sub), que devuelve el nimero de veces que se
encontré la cadena sub en el texto.

Herencia

Hay tres conceptos que son bdsicos para cualquier lenguaje de pro-
gramacién orientado a objetos: el encapsulamiento, la herencia y el
polimorfismo.

En un lenguaje orientado a objetos cuando hacemos que una clase
(subclase) herede de otra clase (superclase) estamos haciendo que la
subclase contenga todos los atributos y métodos que tenia la supercla-
se. No obstante al acto de heredar de una clase también se le llama a
menudo “extender una clase”.

Supongamos que queremos modelar los instrumentos musicales de
una banda, tendremos entonces una clase Guitarra, una clase Bateria,
una clase Bajo, etc. Cada una de estas clases tendrd una serie de atribu-
tos y métodos, pero ocurre que, por el mero hecho de ser instrumentos
musicales, estas clases compartirdin muchos de sus atributos y métodos;
un ejemplo seria el método tocar().

Es mais sencillo crear un tipo de objeto Instrumento con las atributos y
métodos comunes e indicar al programa que Guitarra,Bateria yBajo
son tipos de instrumentos, haciendo que hereden de Instrumento.

Para indicar que una clase hereda de otra se coloca el nombre de la cla-
se de la que se hereda entre paréntesis después del nombre de la clase:

class Instrumento:
def __init__(self, precio):

43

Python para todos

self.precio = precio

def tocar(self):
print "Estamos tocando musica"

def romper(self):
print "Eso lo pagas tu"
print "Son", self.precio, "$$$"

class Bateria(Instrumento):
pass

class Guitarra(Instrumento):
pass

Como Bateriay Guitarra heredan de Instrumento, ambos tienen un
método tocar() y un método romper(),y se inicializan pasando un
pardmetro precio. Pero, ;qué ocurriria si quisiéramos especificar un
nuevo pardmetro tipo_cuerda a la hora de crear un objeto Guitarra?
Bastaria con escribir un nuevo método __init__ para la clase Guitarra
que se ejecutaria en lugar del __init__ de Instrumento. Esto es lo que
se conoce como sobreescribir métodos.

Ahora bien, puede ocurrir en algunos casos que necesitemos sobrees-
cribir un método de la clase padre, pero que en ese método queramos
ejecutar el método de la clase padre porque nuestro nuevo método no
necesite mds que ejecutar un par de nuevas instrucciones extra. En ese
caso usariamos la sintaxis SuperClase.metodo(self, args) para llamar
al método de igual nombre de la clase padre. Por ejemplo, para llamar

al método __init__ de Instrumento desde Guitarra usariamos Instru-
mento.__init__(self, precio)

Observad que en este caso si es necesario especificar el pardmetro self.

Herencia multiple

En Python, a diferencia de otros lenguajes como Java o C#, se permite
la herencia multiple, es decir, una clase puede heredar de varias clases a
la vez. Por ejemplo, podriamos tener una clase Cocodrilo que heredara
de la clase Terrestre, con métodos como caminar () y atributos como
velocidad_caminar y de la clase Acuatico, con métodos como nadar ()
y atributos como velocidad_nadar. Basta con enumerar las clases de

44

Orientacion a objetos

las que se hereda separdndolas por comas:

class Cocodrilo(Terrestre, Acuatico):
pass

En el caso de que alguna de las clases padre tuvieran métodos con el
mismo nombre y nimero de pardmetros las clases sobreescribirian la
implementacién de los métodos de las clases mas a su derecha en la
definicién.

En el siguiente ejemplo, como Terrestre se encuentra mas a la iz-
quierda, seria la definicién de desplazar de esta clase la que prevale-
ceria, y por lo tanto si llamamos al método desplazar de un objeto de
tipo Cocodrilo lo que se imprimiria seria “El animal anda”.

class Terrestre:
def desplazar(self):
print "E1l animal anda"

class Acuatico:
def desplazar(self):
print "E1l animal nada"

class Cocodrilo(Terrestre, Acuatico):
pass

¢ = Cocodrilo()
c.desplazar()

Polimorfismo

La palabra polimorfismo, del latin polys morphos (varias formas), se re-
fiere a la habilidad de objetos de distintas clases de responder al mismo
mensaje. Esto se puede conseguir a través de la herencia: un objeto de
una clase derivada es al mismo tiempo un objeto de la clase padre, de
forma que alli donde se requiere un objeto de la clase padre también se
puede utilizar uno de la clase hija.

Python, al ser de tipado dindmico, no impone restricciones a los tipos
que se le pueden pasar a una funcién, por ejemplo, mds alld de que el
objeto se comporte como se espera: si se va a llamar a un método £ ()
del objeto pasado como parimetro, por ejemplo, evidentemente el

objeto tendrd que contar con ese método. Por ese motivo, a diferencia

45

Python para todos

de lenguajes de tipado estitico como Java o C++, el polimorfismo en
Python no es de gran importancia.

En ocasiones también se utiliza el término polimorfismo para referirse
a la sobrecarga de métodos, término que se define como la capacidad
del lenguaje de determinar qué método ejecutar de entre varios méto-
dos con igual nombre segun el tipo o nimero de los pardmetros que se
le pasa. En Python no existe sobrecarga de métodos (el ltimo método
sobreescribiria la implementacién de los anteriores), aunque se puede
conseguir un comportamiento similar recurriendo a funciones con va-
lores por defecto para los parimetros o a la sintaxis *params o **params
explicada en el capitulo sobre las funciones en Python, o bien usando
decoradores (mecanismo que veremos mds adelante).

Encapsulacion

La encapsulacién se refiere a impedir el acceso a determinados mé-
todos y atributos de los objetos estableciendo asi qué puede utilizarse
desde fuera de la clase.

Esto se consigue en otros lenguajes de programacién como Java utili-
zando modificadores de acceso que definen si cualquiera puede acceder
a esa funcién o variable (public) o si estd restringido el acceso a la
propia clase (private).

En Python no existen los modificadores de acceso, y lo que se suele
hacer es que el acceso a una variable o funcién viene determinado por
su nombre: si el nombre comienza con dos guiones bajos (y no termina
también con dos guiones bajos) se trata de una variable o funcién pri-
vada, en caso contrario es publica. Los métodos cuyo nombre comien-
za y termina con dos guiones bajos son métodos especiales que Python
llama automdticamente bajo ciertas circunstancias, como veremos al
final del capitulo.

En el siguiente ejemplo sélo se imprimird la cadena correspondiente al
método publico(), mientras que al intentar llamar al método __pri-
vado() Python lanzara una excepcién quejindose de que no existe
(evidentemente existe, pero no lo podemos ver porque es privado).

46

Orientacion a objetos

class Ejemplo:
def publico(self):
print "Publico"

def __privado(self):
print "Privado"

ej = Ejemplo()
ej.publico()
ej.__privado()

Este mecanismo se basa en que los nombres que comienzan con un
doble guién bajo se renombran para incluir el nombre de la clase. Esto
implica que el método o atributo no es realmente privado, y podemos
acceder a ¢l mediante una pequefa trampa:

ej._Ejemplo__privado()

En ocasiones también puede suceder que queramos permitir el acceso
a algtn atributo de nuestro objeto, pero que este se produzca de forma
controlada. Para esto podemos escribir métodos cuyo tnico cometido
sea este, métodos que normalmente, por convencién, tienen nombres
como getVariable y setVariable; de ahi que se conozcan también con
el nombre de gezters y setters.

class Fecha():
def __init__(self):
self.__dia = 1

def getDia(self):
return self.__dia

def setDia(self, dia):
if dia > 0 and dia < 31:
self.__dia = dia
else:
print "Error"

mi_fecha = Fecha()
mi_fecha.setDia(33)

Esto se podria simplificar mediante propiedades, que abstraen al usua-

rio del hecho de que se esta utilizando métodos entre bambalinas para
obtener y modificar los valores del atributo:

47

Python para todos

class Fecha(object):
def __init__(self):
self.__dia =1

def getDia(self):
return self.__dia

def setDia(self, dia):
if dia > 0 and dia < 31:
self.__dia = dia
else:
print "Error"

dia = property(getDia, setDia)

mi_fecha = Fecha()
mi_fecha.dia = 33

Clases de “nuevo-estilo”

En el ejemplo anterior os habrd llamado la atencién el hecho de que la
clase Fecha derive de object. La razén de esto es que para poder usar
propiedades la clase tiene que ser de “nuevo-estilo”, clases enriquecidas
introducidas en Python 2.2 que serdn el estindar en Python 3.0 pero
que aun conviven con las clases “clsicas” por razones de retrocompa-
tibilidad. Ademds de las propiedades las clases de nuevo estilo afiaden
otras funcionalidades como descriptores o métodos estiticos.

Para que una clase sea de nuevo estilo es necesario, por ahora, que
extienda una clase de nuevo-estilo. En el caso de que no sea necesa-
rio heredar el comportamiento o el estado de ninguna clase, como en
nuestro ejemplo anterior, se puede heredar de object, que es un objeto
vacio que sirve como base para todas las clases de nuevo estilo.

La diferencia principal entre las clases antiguas y las de nuevo estilo
consiste en que a la hora de crear una nueva clase anteriormente no se
definia realmente un nuevo tipo, sino que todos los objetos creados a
partir de clases, fueran estas las clases que fueran, eran de tipo instan-
ce.

Métodos especiales

Ya vimos al principio del articulo el uso del método __init__. Exis-

48

Orientacion a objetos

ten otros métodos con significados especiales, cuyos nombres siempre
comienzan y terminan con dos guiones bajos. A continuacién se listan
algunos especialmente utiles.

__init__(self, args)
Meétodo llamado después de crear el objeto para realizar tareas de
inicializacién.

__new__(cls, args)

Meétodo exclusivo de las clases de nuevo estilo que se ejecuta antes que
__init__y que se encarga de construir y devolver el objeto en si. Es
equivalente a los constructores de C++ o Java. Se trata de un método
estdtico, es decir, que existe con independencia de las instancias de

la clase: es un método de clase, no de objeto, y por lo tanto el primer
pardmetro no es self, sino la propia clase: cls.

__del__(self)
Meétodo llamado cuando el objeto va a ser borrado. También llamado
destructor, se utiliza para realizar tareas de limpieza.

__str__(self)
Meétodo llamado para crear una cadena de texto que represente a nues-
tro objeto. Se utiliza cuando usamos print para mostrar nuestro objeto
o cuando usamos la funcién str(obj) para crear una cadena a partir de
nuestro objeto.

__cmp__(self, otro)

Meétodo llamado cuando se utilizan los operadores de comparacién
para comprobar si nuestro objeto es menor, mayor o igual al objeto
pasado como pardmetro. Debe devolver un nimero negativo si nuestro
objeto es menor, cero si son iguales, y un nimero positivo si nuestro
objeto es mayor. Si este método no estd definido y se intenta com-
parar el objeto mediante los operadores <, <=, > 0 >= se lanzard una
excepcion. Si se utilizan los operadores == o != para comprobar si dos
objetos son iguales, se comprueba si son el mismo objeto (si tienen el
mismo id).

__len__(self)
Meétodo llamado para comprobar la longitud del objeto. Se utiliza, por
ejemplo, cuando se llama a la funcién len(obj) sobre nuestro objeto.

49

Python para todos

Como es de suponer, el método debe devolver el nimero la longitud

del objeto.

Existen bastantes mas métodos especiales, que permite entre otras
cosas utilizar el mecanismo de slicing sobre nuestro objeto, utilizar

los operadores aritméticos o usar la sintaxis de diccionarios, pero un
estudio exhaustivo de todos los métodos queda fuera del propésito del
capitulo.

50

REVISITANDO
OBJETOS

En los capitulos dedicados a los tipos simples y las colecciones vefamos
por primera vez algunos de los objetos del lenguaje Python: nimeros,
booleanos, cadenas de texto, diccionarios, listas y tuplas.

Ahora que sabemos qué son las clases, los objetos, las funciones, y los
métodos es el momento de revisitar estos objetos para descubrir su
verdadero potencial.

Veremos a continuacién algunos métodos utiles de estos objetos. Evi-
dentemente, no es necesario memorizarlos, pero si, al menos, recordar
que existen para cuando sean necesarios.

Diccionarios

D.has_key(k)
Comprueba si el diccionario tiene la clave k. Es equivalente a la sin-
taxis k in D.

D.items()
Devuelve una lista de tuplas con pares clave-valor.

D.keys()
Devuelve una lista de las claves del diccionario.

D.pop(k[, d])
Borra la clave k del diccionario y devuelve su valor. Si no se encuentra
dicha clave se devuelve d si se especificé el pardmetro o bien se lanza

51

Python para todos

una excepcion.

D.values()
Devuelve una lista de los valores del diccionario.

Cadenas

S.count(sub[, start[, end]])

Devuelve el nimero de veces que se encuentra sub en la cadena. Los
pardmetros opcionales start y end definen una subcadena en la que
buscar.

S.find(sub[, start[, end]])
Devuelve la posicién en la que se encontré por primera vez sub en la
cadena o -1 si no se encontrd.

S.join(sequence)
Devuelve una cadena resultante de concatenar las cadenas de la se-
cuencia seq separadas por la cadena sobre la que se llama el método.

S.partition(sep)

Busca el separador sep en la cadena y devuelve una tupla con la sub-
cadena hasta dicho separador, el separador en si, y la subcadena del
separador hasta el final de la cadena. Si no se encuentra el separador, la
tupla contendra la cadena en si y dos cadenas vacias.

S.replace(old, new[, count])

Devuelve una cadena en la que se han reemplazado todas las ocurren-
cias de la cadena old por la cadena new. Si se especifica el parimetro
count, este indica el nimero maximo de ocurrencias a reemplazar.

S.split([sep [,maxsplit]])

Devuelve una lista conteniendo las subcadenas en las que se divide
nuestra cadena al dividirlas por el delimitador sep. En el caso de que
no se especifique sep, se usan espacios. Si se especifica maxsplit, este
indica el nimero maximo de particiones a realizar.

Listas

L.append(object)

52

Revisitando objetos

Afiade un objeto al final de la lista.

L.count(value)
Devuelve el nimero de veces que se encontré value en la lista.

L.extend(iterable)
Anade los elementos del iterable a la lista.

L.index(value[, start[, stop]])

Devuelve la posicién en la que se encontré la primera ocurrencia de
value. Si se especifican, start y stop definen las posiciones de inicio y
fin de una sublista en la que buscar.

L.insert(index, object)
Inserta el objeto object en la posicién index.

L.pop([index])
Devuelve el valor en la posicién index y lo elimina de la lista. Si no se
especifica la posicién, se utiliza el dltimo elemento de la lista.

L.remove(value)
Eliminar la primera ocurrencia de value en la lista.

L.reverse()
Invierte la lista. Esta funcién trabaja sobre la propia lista desde la que
se invoca el método, no sobre una copia.

L.sort(cmp=None, key=None, reverse=False)

Ordena la lista. Si se especifica cmp, este debe ser una funcién que tome
como pardmetro dos valores x e y de la lista y devuelva -1 si x es menor
que y, 0 si son iguales y 1 si x es mayor que y.

El parametro reverse es un booleano que indica si se debe ordenar
la lista de forma inversa, lo que seria equivalente a llamar primero a
L.sort()y después al.reverse().

Por tdltimo, si se especifica, el pardmetro key debe ser una funcién que

tome un elemento de la lista y devuelva una clave a utilizar a la hora de
comparar, en lugar del elemento en si.

53

PROGRAMACION
FUNCIONAL

La programacién funcional es un paradigma en el que la programa-
cién se basa casi en su totalidad en funciones, entendiendo el concepto
de funcién segin su definicién matemitica, y no como los simples
subprogramas de los lenguajes imperativos que hemos visto hasta
ahora.

En los lenguajes funcionales puros un programa consiste exclusiva-
mente en la aplicacién de distintas funciones a un valor de entrada
para obtener un valor de salida.

Python, sin ser un lenguaje puramente funcional incluye varias caracte-
risticas tomadas de los lenguajes funcionales como son las funciones de
orden superior o las funciones lambda (funciones anénimas).

Funciones de orden superior

El concepto de funciones de orden superior se refiere al uso de fun-
ciones como si de un valor cualquiera se tratara, posibilitando el pasar
funciones como pardmetros de otras funciones o devolver funciones
como valor de retorno.

Esto es posible porque, como hemos insistido ya en varias ocasiones,
en Python todo son objetos. Y las funciones no son una excepcién.

Veamos un pequefio ejemplo

def saludar(lang):
def saludar_es():

54

Programacion funcional

print "Hola"

def saludar_en():
print "Hi"

def saludar_fr():
print "Salut"

lang_func = {"es": saludar_es,
"en": saludar_en,
"fr": saludar_fr}
return lang_func[lang]

= saludar("es")

f
£()

Como podemos observar lo primero que hacemos en nuestro pequefio
programa es llamar a la funcién saludar con un pardmetro "es". En la
funcién saludar se definen varias funciones: saludar_es, saludar_eny
saludar_fr y a continuacién se crea un diccionario que tiene como cla-
ves cadenas de texto que identifican a cada lenguaje, y como valores las
funciones. El valor de retorno de la funcién es una de estas funciones.
La funcién a devolver viene determinada por el valor del parimetro
lang que se pasé como argumento de saludar.

Como el valor de retorno de saludar es una funcién, como hemos
visto, esto quiere decir que f es una variable que contiene una funcién.
Podemos entonces llamar a la funcién a la que se refiere f de la forma
en que llamarfamos a cualquier otra funcién, afiadiendo unos parénte-
sis y, de forma opcional, una serie de pardmetros entre los paréntesis.

Esto se podria acortar, ya que no es necesario almacenar la funcién que
nos pasan como valor de retorno en una variable para poder llamarla:

>>> saludar("en")()
Hi

>>> saludar("fr")()
Salut

En este caso el primer par de paréntesis indica los pardmetros de la

funcién saludar,y el segundo par, los de la funcién devuelta por salu-
dar.

55

Python para todos

Iteraciones de orden superior so-
bre listas

Una de las cosas mds interesantes que podemos hacer con nuestras
funciones de orden superior es pasarlas como argumentos de las fun-
ciones map, filter y reduce. Estas funciones nos permiten sustituir los
bucles tipicos de los lenguajes imperativos mediante construcciones
equivalentes.

map(function, sequence[, sequence, ...])

La funcién map aplica una funcién a cada elemento de una secuencia y
devuelve una lista con el resultado de aplicar la funcién a cada elemen-
to. Si se pasan como pardmetros n secuencias, la funcién tendra que
aceptar n argumentos. Si alguna de las secuencias es mds pequefia que
las demis, el valor que le llega a la funcién function para posiciones
mayores que el tamafio de dicha secuencia serd None.

A continuacién podemos ver un ejemplo en el que se utiliza map para
elevar al cuadrado todos los elementos de una lista:

def cuadrado(n):
return n ** 2

=[1, 2, 3]

1
12 = map(cuadrado, 1)

filter(function, sequence)

La funcion filter verifica que los elementos de una secuencia cum-
plan una determinada condicién, devolviendo una secuencia con los
elementos que cumplen esa condicién. Es decir, para cada elemento de
sequence se aplica la funcién function; si el resultado es True se afiade
alalista y en caso contrario se descarta.

A continuacién podemos ver un ejemplo en el que se utiliza filter
para conservar solo los nimeros que son pares.

def es_par(n):
return (n % 2.0 == 0)

1 =11, 2, 3]
56

Programacion funcional

12 = filter(es_par, 1)

reduce(function, sequence], initial])

La funcién reduce aplica una funcién a pares de elementos de una
secuencia hasta dejarla en un solo valor.

A continuacién podemos ver un ejemplo en el que se utiliza reduce
para sumar todos los elementos de una lista.

def sumar(x, y):
return x +y

=[1, 2, 3]

1
12 = reduce(sumar, 1)

Funciones lambda

El operador 1ambda sirve para crear funciones anénimas en linea. Al ser
funciones anénimas, es decir, sin nombre, estas no podrén ser referen-
ciadas mis tarde.

Las funciones lambda se construyen mediante el operador 1ambda, los
pardmetros de la funcién separados por comas (atencién, SIN parénte-
sis), dos puntos (:) y el cédigo de la funcién.

Esta construccién podrian haber sido de utilidad en los ejemplos an-
teriores para reducir cédigo. El programa que utilizamos para explicar
filter, por ejemplo, podria expresarse asi:

1=101, 2, 3]
12 = filter(lambda n: n % 2.0 == 0, 1)

Comparemoslo con la versién anterior:

def es_par(n):
return (n % 2.0 == 0)

1L=11,2, 3]
12 = filter(es_par, 1)

Las funciones lambda estdn restringidas por la sintaxis a una sola

57

Python para todos

expresion.

Comprension de listas

En Python 3 map y filter se veran sustituidas por las /ist comprehen-
sions o comprension de listas, caracteristica tomada del lenguaje de
programacién funcional Haskell y que estd presente en Python desde
la versién 2.0.

La comprensién de listas es una construccién que permite crear listas
a partir de otras listas. Cada una de estas construcciones consta de una
expresiéon que determina cémo modificar el elemento de la lista origi-
nal, seguida de una o varias clausulas for y opcionalmente una o varias
clausulas if.

Veamos un ejemplo de cémo se podria utilizar la comprensién de listas
para elevar al cuadrado todos los elementos de una lista, como hicimos
en nuestro ejemplo de map.

12 = [n ** 2 for n in 1]

Esta expresion se leeria como “para cada n en 1 haz n ™ 2”. Como
vemos tenemos primero la expresién que modifica los valores de la lista
original (n ** 2), después el for, el nombre que vamos a utilizar para
referirnos al elemento actual de la lista original, el in, y la lista sobre la
que se itera.

El ejemplo que utilizamos para la funcién filter (conservar solo los
numeros que son pares) se podria expresar con comprensién de listas
asi:

12 =[nforninlif n% 2.0 == 0]

Veamos por tltimo un ejemplo de compresion de listas con varias
clausulas for:

—
—
(&)
—_

= [0, 1, 2, 3]

m = [llall, Ilbl|]

n=1_[s *vforsinm
for v in 1

58

Programacion funcional

if v > 0]

Esta construccién seria equivalente a una serie de for-in anidados:

1
m
n

for s in m:

if v > 0:
n.append(s* v)

Generadores

Las expresiones generadoras funcionan de forma muy similar a la
comprension de listas. De hecho su sintaxis es exactamente igual, a
excepcion de que se utilizan paréntesis en lugar de corchetes:

12 = (n ** 2 for n in 1)

Sin embargo las expresiones generadoras se diferencian de la compren-
sién de listas en que no se devuelve una lista, sino un generador.

>>> 12 = [n ** 2 for n in 1]
>>> 12
[G)y]1 41
>>> 12 = (

>>> 12

<generator object at 0xQ0E33210>

9]
n ** 2 for n in 1)

Un generador es una clase especial de funcién que genera valores sobre
los que iterar. Para devolver el siguiente valor sobre el que iterar se
utiliza la palabra clave yield en lugar de return. Veamos por ejemplo
un generador que devuelva nimeros de n a m con un salto s.

def mi_generador(n, m, s):
while(n <= m):
yield n
n+=s

>>> X = mi_generador(0, 5, 1)

>>> X
<generator object at 0xQ0E25710>

59

Python para todos

El generador se puede utilizar en cualquier lugar donde se necesite un
objeto iterable. Por ejemplo en un for-in:

for n in mi_generador(0, 5, 1):
print n

Como no estamos creando una lista completa en memoria, sino gene-
rando un solo valor cada vez que se necesita, en situaciones en las que
no sea necesario tener la lista completa el uso de generadores puede
suponer una gran diferencia de memoria. En todo caso siempre es po-
sible crear una lista a partir de un generador mediante la funcién list:

lista = list(mi_generador)

Decoradores

Un decorador no es es mas que una funcién que recibe una funcién
como pardmetro y devuelve otra funcién como resultado. Por ejem-
plo podriamos querer afiadir la funcionalidad de que se imprimiera el
nombre de la funcién llamada por motivos de depuracién:

def mi_decorador(funcion):
def nueva(*args):
print "Llamada a la funcion", funcion.__name__
retorno = funcion(*args)
return retorno
return nueva

Como vemos el cédigo de la funcién mi_decorador no hace mds que
crear una nueva funcién y devolverla. Esta nueva funcién imprime el
nombre de la funcién a la que “decoramos”, ejecuta el cédigo de dicha
funcién, y devuelve su valor de retorno. Es decir, que si llamaramos

a la nueva funcién que nos devuelve mi_decorador, el resultado seria
el mismo que el de llamar directamente a la funcién que le pasamos
como pardmetro, exceptuando el que se imprimiria ademds el nombre
de la funcién.

Supongamos como ejemplo una funcién imp que no hace otra cosa que
mostrar en pantalla la cadena pasada como pardmetro.

>>> imp("hola")

60

Programacion funcional

hola

>>> mi_decorador(imp)("hola")
Llamada a la funcién imp

hola

La sintaxis para llamar a la funcién que nos devuelve mi_decorador no
es muy clara, aunque si lo estudiamos detenidamente veremos que no
tiene mayor complicacién. Primero se llama a la funcién que decora
con la funcién a decorar: mi_decorador (imp); y una vez obtenida la
funcién ya decorada se la puede llamar pasando el mismo parimetro
que se pas6 anteriormente: mi_decorador(imp)("hola")

Esto se podria expresar més claramente precediendo la definicién de la
funcién que queremos decorar con el signo @ seguido del nombre de la
funcién decoradora:

@mi_decorador
def imp(s):
print s

De esta forma cada vez que se llame a imp se estard llamando realmen-
te a la versién decorada. Python incorpora esta sintaxis desde la version
2.4 en adelante.

Si quisiéramos aplicar més de un decorador bastaria afiadir una nueva
linea con el nuevo decorador.

@otro_decorador

@mi_decorador

def imp(s):
print s

Es importante advertir que los decoradores se ejecutarin de abajo a

arriba. Es decir, en este ejemplo primero se ejecutaria mi_decorador y
después otro_decorador.

61

EXCEPCIONES

Las excepciones son errores detectados por Python durante la eje-
cucién del programa. Cuando el intérprete se encuentra con una
situacién excepcional, como el intentar dividir un nimero entre 0 o
el intentar acceder a un archivo que no existe, este genera o lanza una
excepcion, informando al usuario de que existe algin problema.

Sila excepcién no se captura el flujo de ejecucion se interrumpe y se
muestra la informacién asociada a la excepcién en la consola de forma
que el programador pueda solucionar el problema.

Veamos un pequeio programa que lanzaria una excepcidn al intentar
dividir 1 entre 0.

def division(a, b):
return a / b

def calcular():
division(1, 0)

calcular()

Silo ejecutamos obtendremos el siguiente mensaje de error:

$ python ejemplo.py

Traceback (most recent call last):

File "ejemplo.py", line 7, in

calcular()

File "ejemplo.py", line 5, in calcular

division(1, 0)

File "ejemplo.py", line 2, in division

a/b

ZeroDivisionError: integer division or modulo by zero

Lo primero que se muestra es el trazado de pila o #raceback, que con-
siste en una lista con las llamadas que provocaron la excepcién. Como

62

Excepciones

vemos en el trazado de pila, el error estuvo causado por la llamada a
calcular() de lalinea 7, que a su vez llama a division(1, 0) enla
linea 5 y en ultima instancia por la ejecucién de la sentencia a / b de
la linea 2 de division.

A continuacién vemos el tipo de la excepcidn, ZeroDivionError, junto
a una descripcién del error: “integer division or modulo by zero” (mé-
dulo o divisién entera entre cero).

En Python se utiliza una construccién try-except para capturar y
tratar las excepciones. El bloque try (intentar) define el fragmento de
c6digo en el que creemos que podria producirse una excepcién. El blo-
que except (excepcién) permite indicar el tratamiento que se llevard a
cabo de producirse dicha excepcién. Muchas veces nuestro tratamiento
de la excepcién consistird simplemente en imprimir un mensaje mds
amigable para el usuario, otras veces nos interesard registrar los errores
y de vez en cuando podremos establecer una estrategia de resolucién

del problema.

En el siguiente ejemplo intentamos crear un objeto f de tipo fichero.
De no existir el archivo pasado como pardmetro, se lanza una excep-
cién de tipo IOError, que capturamos gracias a nuestro try-except.

try:
f = file("archivo.txt")
except:

print "E1l archivo no existe"

Python permite utilizar varios except para un solo bloque try, de
forma que podamos dar un tratamiento distinto a la excepcién de-
pendiendo del tipo de excepcién de la que se trate. Esto es una buena
préctica, y es tan sencillo como indicar el nombre del tipo a continua-
cién del except.

try:

num = int("3a")

print no_existe
except NameError:

print "La variable no existe"
except ValueError:

print "E1l valor no es un numero"

63

Python para tod

0s

Cuando se lanza una excepcién en el bloque try, se busca en cada un
de las clausulas except un manejador adecuado para el tipo de error
que se produjo. En caso de que no se encuentre, se propaga la excep-
cién.

Ademis podemos hacer que un mismo except sirva para tratar mds
de una excepcién usando una tupla para listar los tipos de error que
queremos que trate el bloque:

try:
num = int("3a")
print no_existe

except (NameError, ValueError):
print "Ocurrio un error"

La construccién try-except puede contar ademds con una clausula
else, que define un fragmento de cédigo a ejecutar sélo si no se ha
producido ninguna excepcién en el try.

try:

num = 33
except:

print "Hubo un error!"
else:

print "Todo esta bien"

También existe una clausula finally que se ejecuta siempre, se pro-
duzca o no una excepcién. Esta clausula se suele utilizar, entre otras
cosas, para tareas de limpieza.

try:
z=x1/Yy
except ZeroDivisionError:
print "Division por cero"
finally:
print "Limpiando"

También es interesante comentar que como programadores podemos
crear y lanzar nuestras propias excepciones. Basta crear una clase que
herede de Exception o cualquiera de sus hijas y lanzarla con raise.

class MiError(Exception):
def __init__(self, valor):
self.valor = valor

a

64

Excepciones

def __str__(self):
return "Error

+ str(self.valor)
try:
if resultado > 20:
raise MiError(33)

except MiError, e:
print e

Por tltimo, a continuacién se listan a modo de referencia las excepcio-
nes disponibles por defecto, asi como la clase de la que deriva cada una
de ellas entre paréntesis.

BaseException: Clase de la que heredan todas las excepciones.

Exception(BaseException): Super clase de todas las excepciones que
no sean de salida.

GeneratorExit(Exception): Se pide que se salga de un generador.

StandarError(Exception): Clase base para todas las excepciones que
no tengan que ver con salir del intérprete.

ArithmeticError(Standarderror): Clase base para los errores aritmé-
ticos.

FloatingPointError(ArithmeticError): Error en una operacién de
coma flotante.

OverflowError(ArithmeticError): Resultado demasiado grande para
poder representarse.

ZeroDivisionError(ArithmeticError): Lanzada cuando el segundo
argumento de una operacién de divisién o médulo era 0.

AssertionError(StandardError): Fall6 la condicién de un estamento
assert.

AttributeError(StandardError): No se encontrd el atributo.

65

Python para todos

EOFError(StandardError): Se intent6 leer mds alla del final de fichero.

EnvironmentError(StandardError): Clase padre de los errores relacio-
nados con la entrada/salida.

IOError(EnvironmentError): Error en una operacion de entrada/salida.
OSError(EnvironmentError): Error en una llamada a sistema.
WindowsError (0SError): Error en una llamada a sistema en Windows.

ImportError(StandardError): No se encuentra el médulo o el elemen-
to del médulo que se queria importar.

LookupError(StandardError): Clase padre de los errores de acceso.

IndexError(LookupError): El indice de la secuencia estd fuera del
rango posible.

KeyError(LookupError): La clave no existe.
MemoryError(StandardError): No queda memoria suficiente.

NameError(StandardError): No se encontré ningin elemento con ese
nombre.

UnboundLocalError(NameError): El nombre no estd asociado a ninguna
variable.

ReferenceError(StandardError): El objeto no tiene ninguna referen-
cia fuerte apuntando hacia él.

RuntimeError(StandardError): Error en tiempo de ejecucion no espe-
cificado.

NotImplementedError (RuntimeError): Ese método o funcién no estd
implementado.

SyntaxError(StandardError): Clase padre para los errores sinticticos.
66

Excepciones

IndentationError(SyntaxError): Error en la indentacién del archivo.

TabError(IndentationError): Error debido a la mezcla de espacios y
tabuladores.

SystemError(StandardError): Error interno del intérprete.
TypeError(StandardError): Tipo de argumento no apropiado.
ValueError(StandardError): Valor del argumento no apropiado.

UnicodeError(ValueError): Clase padre para los errores relacionados
con unicode.

UnicodeDecodeError(UnicodeError): Error de decodificacién unicode.
UnicodeEncodeError(UnicodeError): Error de codificacién unicode.
UnicodeTranslateError(UnicodeError): Error de traduccién unicode.
StopIteration(Exception): Se utiliza para indicar el final del iterador.
Warning(Exception): Clase padre para los avisos.

DeprecationWarning(Warning): Clase padre para avisos sobre caracte-
risticas obsoletas.

FutureWarning(Warning): Aviso. La semdntica de la construccién cam-
biard en un futuro.

ImportWarning(Warning): Aviso sobre posibles errores a la hora de
importar.

PendingDeprecationWarning(Warning): Aviso sobre caracteristicas que
se marcardn como obsoletas en un futuro préximo.

RuntimeWarning(Warning): Aviso sobre comportmaientos dudosos en
tiempo de ejecucion.

67

Python para todos

SyntaxWarning(Warning): Aviso sobre sintaxis dudosa.

UnicodeWarning(Warning): Aviso sobre problemas relacionados con
Unicode, sobre todo con problemas de conversion.

UserWarning(Warning): Clase padre para avisos creados por el progra-
mador.

KeyboardInterrupt(BaseException): El programa fué interrumpido
por el usuario.

SystemExit(BaseException): Peticién del intérprete para terminar la
ejecucion.

68

MODULOS Y
PAQUETES

Modulos

Para facilitar el mantenimiento y la lectura los programas demasiado
largos pueden dividirse en médulos, agrupando elementos relaciona-
dos. Los médulos son entidades que permiten una organizacién y divi-
si6én légica de nuestro cédigo. Los ficheros son su contrapartida fisica:
cada archivo Python almacenado en disco equivale a un médulo.

Vamos a crear nuestro primer médulo entonces creando un pequefio
archivo modulo.py con el siguiente contenido:

def mi_funcion():
print "una funcion"

class MiClase:
def __init__(self):
print "una clase"

print "un modulo"

Si quisiéramos utilizar la funcionalidad definida en este médulo en
nuestro programa tendriamos que importarlo. Para importar un mé-
dulo se utiliza la palabra clave import seguida del nombre del médulo,
que consiste en el nombre del archivo menos la extensién. Como ejem-
plo, creemos un archivo programa.py en el mismo directorio en el que
guardamos el archivo del médulo (esto es importante, porque si no se
encuentra en el mismo directorio Python no podra encontrarlo), con el
siguiente contenido:

import modulo

69

Python para todos

modulo.mi_funcion()

El import no solo hace que tengamos disponible todo lo definido
dentro del médulo, sino que también ejecuta el cédigo del médulo. Por
esta raz6n nuestro programa, ademds de imprimir el texto “una fun-

M »” . . .zz <« »”
cion”al llamar a mi_funcion, también imprimiria el texto “un modulo”,
debido al print del médulo importado. No se imprimiria, no obstante,
el texto “una clase”, ya que lo que se hizo en el médulo fue tan solo
definir de la clase, no instanciarla.

La clausula import también permite importar varios médulos en la
misma linea. En el siguiente ejemplo podemos ver cémo se importa
con una sola clausula import los médulos de la distribucién por defecto
de Python os, que engloba funcionalidad relativa al sistema operativo;
sys, con funcionalidad relacionada con el propio intérprete de Python
y time, en el que se almacenan funciones para manipular fechas y
horas.

import os, sys, time

print time.asctime()

Sin duda os habréis fijado en este y el anterior ejemplo en un detalle
importante, y es que, como vemos, es necesario preceder el nombre de
los objetos que importamos de un médulo con el nombre del médulo
al que pertenecen, o lo que es lo mismo, el espacio de nombres en el
que se encuentran. Esto permite que no sobreescribamos accidental-
mente algln otro objeto que tuviera el mismo nombre al importar otro
moédulo.

Sin embargo es posible utilizar la construccién from-import para
ahorrarnos el tener que indicar el nombre del médulo antes del objeto
que nos interesa. De esta forma se importa el objeto o los objetos que
indiquemos al espacio de nombres actual.

from time import asctime

print asctime()

70

Modulos y paquetes

Aunque se considera una mala prictica, también es posible importar
todos los nombres del médulo al espacio de nombres actual usando el
caracter *:

from time import *

Ahora bien, recordareis que a la hora de crear nuestro primer médulo
insisti en que lo guardarais en el mismo directorio en el que se en-
contraba el programa que lo importaba. Entonces, s;cémo podemos
importar los médulos os, sys o time si no se encuentran los archivos
0s.py, sys.py y time.py en el mismo directorio?

A la hora de importar un médulo Python recorre todos los directorios
indicados en la variable de entorno PYTHONPATH en busca de un archivo
con el nombre adecuado. El valor de la variable PYTHONPATH se puede
consultar desde Python mediante sys.path

>>> import sys
>>> sys.path

De esta forma para que nuestro médulo estuviera disponible para
todos los programas del sistema bastaria con que lo copidramos a uno
de los directorios indicados en PYTHONPATH.

En el caso de que Python no encontrara ningiin médulo con el nom-
bre especificado, se lanzaria una excepcién de tipo ImportError.

Por dltimo es interesante comentar que en Python los médulos
también son objetos; de tipo module en concreto. Por supuesto esto
significa que pueden tener atributos y métodos. Uno de sus atribu-

tos, __name__, se utiliza a menudo para incluir cédigo ejecutable en un
moédulo pero que este sélo se ejecute si se llama al médulo como pro-
grama, y no al importarlo. Para lograr esto basta saber que cuando se
ejecuta el médulo directamente __name__ tiene como valor "__main__",
mientras que cuando se importa, el valor de __name__ es el nombre del
modulo:

——

print "Se muestra siempre"

if __name__ == "__main__":
print "Se muestra si no es importacion"

71

Python para todos

Otro atributo interesante es __doc__, que, como en el caso de fun-
ciones y clases, sirve a modo de documentacién del objeto (docstring
o cadena de documentacién). Su valor es el de la primera linea del
cuerpo del médulo, en el caso de que esta sea una cadena de texto; en
caso contrario valdra None.

Paquetes

Silos médulos sirven para organizar el c6digo, los paquetes sirven para
organizar los médulos. Los paquetes son tipos especiales de médulos
(ambos son de tipo module) que permiten agrupar médulos relacio-
nados. Mientras los médulos se corresponden a nivel fisico con los
archivos, los paquetes se representan mediante directorios.

En una aplicacién cualquiera podriamos tener, por ejemplo, un paque-
te iu para la interfaz o un paquete bbdd para la persistencia a base de
datos.

Para hacer que Python trate a un directorio como un paquete es nece-
sario crear un archivo __init_.py en dicha carpeta. En este archivo se
pueden definir elementos que pertenezcan a dicho paquete, como una
constante DRIVER para el paquete bbdd, aunque habitualmente se trata-
rd de un archivo vacio. Para hacer que un cierto médulo se encuentre
dentro de un paquete, basta con copiar el archivo que define el médulo
al directorio del paquete.

omo los modulos, para importar paquetes también se utiliza impor
C 1 dulos, p portar paquetes tamb til t
y from-import y el caracter . para separar paquetes, subpaquetes y
modulos.

import paq.subpaqg.modulo

paq.subpaqg.modulo.func()

72

ENTRADA/SALIDA Y
FICHEROS

Nuestros programas serian de muy poca utilidad si no fueran capaces
de interaccionar con el usuario. En capitulos anteriores vimos, de pasa-
da, el uso de la palabra clave print para mostrar mensajes en pantalla.

En esta leccién, ademds de describir mds detalladamente del uso de
print para mostrar mensajes al usuario, aprenderemos a utilizar las
funciones input y raw_input para pedir informacion, asi como los
argumentos de linea de comandos y, por tltimo, la entrada/salida de
ficheros.

Entrada estandar

La forma mis sencilla de obtener informacién por parte del usuario
es mediante la funcién raw_input. Esta funcién toma como pardme-
tro una cadena a usar como prompt (es decir, como texto a mostrar al
usuario pidiendo la entrada) y devuelve una cadena con los caracteres
introducidos por el usuario hasta que pulsé la tecla Enter. Veamos un
pequeio ejemplo:

nombre = raw_input("Como te llamas? ")
print "Encantado, " + nombre

Si necesitdramos un entero como entrada en lugar de una cadena, por
ejemplo, podriamos utilizar la funcién int para convertir la cadena a
entero, aunque seria conveniente tener en cuenta que puede lanzarse
una excepcion si lo que introduce el usuario no es un nimero.

try:
edad = raw_input("Cuantos anyos tienes? ")

73

Python para todos

dias = int(edad) * 365

print "Has vivido " + str(dias) + " dias"
except ValueError:

print "Eso no es un numero"

La funcién input es un poco mas complicada. Lo que hace esta fun-
cién es utilizar raw_input para leer una cadena de la entrada estindar,
y después pasa a evaluarla como si de cédigo Python se tratara; por lo
tanto input deberia tratarse con sumo cuidado.

Parametros de linea de comando

Ademis del uso de input y raw_input el programador Python cuen-
ta con otros métodos para obtener datos del usuario. Uno de ellos es
el uso de pardmetros a la hora de llamar al programa en la linea de
comandos. Por ejemplo:

python editor.py hola.txt

En este caso hola. txt seria el parimetro, al que se puede acceder a
través de la lista sys.argv, aunque, como es de suponer, antes de poder
utilizar dicha variable debemos importar el médulo sys. sys.argv[0]
contiene siempre el nombre del programa tal como lo ha ejecutado el
usuario, sys.argv[1], si existe, seria el primer parimetro; sys.argv[2]
el segundo, y asi sucesivamente.

import sys

if(len(sys.argv) > 1):
print "Abriendo "
else:
print "Debes indicar el nombre del archivo"

+ sys.argv[1]

Existen médulos, como optparse, que facilitan el trabajo con los argu-
mentos de la linea de comandos, pero explicar su uso queda fuera del
objetivo de este capitulo.

Salida estandar

La forma mis sencilla de mostrar algo en la salida estdndar es median-
te el uso de la sentencia print, como hemos visto multitud de veces en

74

Entrada/Salida. Ficheros

ejemplos anteriores. En su forma mads bdsica a la palabra clave print le
sigue una cadena, que se mostrard en la salida estindar al ejecutarse el
estamento.

>>> print "Hola mundo"
Hola mundo

Después de imprimir la cadena pasada como pardmetro el puntero se
sitda en la siguiente linea de la pantalla, por lo que el print de Python
funciona igual que el printin de Java.

En algunas funciones equivalentes de otros lenguajes de programacién
es necesario afiadir un caricter de nueva linea para indicar explicita-
mente que queremos pasar a la siguiente linea. Este es el caso de la
funcién printf de C o la propia funcién print de Java.

Ya explicamos el uso de estos caracteres especiales durante la explica-
cién del tipo cadena en el capitulo sobre los tipos bédsicos de Python.
La siguiente sentencia, por ejemplo, imprimiria la palabra “Hola”,
seguida de un renglén vacio (dos caracteres de nueva linea, '\n'),y

a continuacién la palabra “mundo” indentada (un carécter tabulador,
"\t').

print "Hola\n\n\tmundo"

Para que la siguiente impresion se realizara en la misma linea tendria-
mos que colocar una coma al final de la sentencia. Comparemos el
resultado de este cédigo:

>>> for i in range(3):
>>> ...print i,
012

Con el de este otro, en el que no utiliza una coma al final de la senten-
cia:

>>> for i in range(3):
>>> ...print i

0

1

2

75

Python para todos

Este mecanismo de colocar una coma al final de la sentencia funcio-
na debido a que es el simbolo que se utiliza para separar cadenas que
queramos imprimir en la misma linea.

>>> print "Hola", "mundo"
Hola mundo

Esto se diferencia del uso del operador + para concatenar las cadenas
en que al utilizar las comas print introduce automaticamente un espa-
cio para separar cada una de las cadenas. Este no es el caso al utilizar
el operador +, ya que lo que le llega a print es un solo argumento: una
cadena ya concatenada.

>>> print "Hola" + "mundo"
Holamundo

Ademis, al utilizar el operador + tendriamos que convertir antes cada
argumento en una cadena de no serlo ya, ya que no es posible concate-
nar cadenas y otros tipos, mientras que al usar el primer método no es
necesaria la conversién.

>>> print "Cuesta", 3, "euros"

Cuesta 3 euros

>>> print "Cuesta" + 3 + "euros"

<type 'exceptions.TypeError'>: cannot concatenate
'int' objects

str' and

La sentencia print, o mas bien las cadenas que imprime, permiten
también utilizar técnicas avanzadas de formateo, de forma similar al
sprintf de C. Veamos un ejemplo bastante simple:

print "Hola %s" % "mundo"
print "%s %s" % ("Hola", "mundo")

Lo que hace la primera linea es introducir los valores a la derecha del
simbolo % (la cadena "mundo") en las posiciones indicadas por los espe-
cificadores de conversién de la cadena a la izquierda del simbolo %, tras
convertirlos al tipo adecuado.

En la segunda linea, vemos cémo se puede pasar mds de un valor a
sustituir, por medio de una tupla.

76

Entrada/Salida. Ficheros

En este ejemplo sélo tenemos un especificador de conversién: %s.

Los especificadores mas sencillos estin formados por el simbolo %
seguido de una letra que indica el tipo con el que formatear el valor
Por ejemplo:

Especificador | Formato

%s Cadena

%d Entero

%0 Octal

%Xx Hexadecimal
%t Real

Se puede introducir un nimero entre el %y el caricter que indica el
tipo al que formatear, indicando el nimero minimo de caracteres que
queremos que ocupe la cadena. Si el tamaifio de la cadena resultante

es menor que este numero, se afiadirdn espacios a la izquierda de la
cadena. En el caso de que el nimero sea negativo, ocurrir exactamente
lo mismo, sélo que los espacios se afiadirdn a la derecha de la cadena.

>>> print "%10s mundo" % "Hola"

______ Hola mundo
>>> print "%-10s mundo" % "Hola"
Hola mundo

En el caso de los reales es posible indicar la precisién a utilizar prece-
diendo la f de un punto seguido del nimero de decimales que quere-
mos mostrar:

>>> from math import pi
>>> print "%.4f" % pi
3.1416

La misma sintaxis se puede utilizar para indicar el nimero de caracte-
res de la cadena que queremos mostrar

>>> print "%.4s" % "hola mundo"
hola

77

Python para todos

Archivos

Los ficheros en Python son objetos de tipo file creados mediante la
funcién open (abrir). Esta funcién toma como pardmetros una cadena
con la ruta al fichero a abrir, que puede ser relativa o absoluta; una
cadena opcional indicando el modo de acceso (si no se especifica se
accede en modo lectura) y, por ultimo, un entero opcional para especi-
ficar un tamafio de buffer distinto del utilizado por defecto.

El modo de acceso puede ser cualquier combinacién légica de los
siguientes modos:

* 'r':read,lectura. Abre el archivo en modo lectura. El archivo tiene
que existir previamente, en caso contrario se lanzard una excepcién
de tipo IOError.

* 'w':write, escritura. Abre el archivo en modo escritura. Si el archi-
vo no existe se crea. Si existe, sobreescribe el contenido.

* 'a':append, afiadir. Abre el archivo en modo escritura. Se diferen-
cia del modo 'w' en que en este caso no se sobreescribe el conteni-
do del archivo, sino que se comienza a escribir al final del archivo.

* 'b':binary, binario.

* '+':permite lectura y escritura simultdneas.

* 'U':universal newline, saltos de linea universales. Permite trabajar
con archivos que tengan un formato para los saltos de linea que no
coincide con el de la plataforma actual (en Windows se utiliza el
caracter CR LF, en Unix LF y en Mac OS CR).

f = open("archivo.txt", "w")

Tras crear el objeto que representa nuestro archivo mediante la funcién
open podremos realizar las operaciones de lectura/escritura pertinen-
tes utilizando los métodos del objeto que veremos en las siguientes
secciones.

Una vez terminemos de trabajar con el archivo debemos cerrarlo utili-
zando el método close.

Lectura de archivos
78

Entrada/Salida. Ficheros

Para la lectura de archivos se utilizan los métodos read, readline y
realines.

El método read devuelve una cadena con el contenido del archivo o
bien el contenido de los primeros n bytes, si se especifica el tamafio
méximo a leer.

completo = f.read()

parte = f2.read(512)

El método readline sirve para leer las lineas del fichero una por una.
Es decir, cada vez que se llama a este método, se devuelve el conteni-
do del archivo desde el puntero hasta que se encuentra un cardcter de
nueva linea, incluyendo este cardcter.

while True:
linea = f.readline()
if not linea: break
print line

Por dltimo, readlines, funciona leyendo todas las lineas del archivo y
devolviendo una lista con las lineas leidas.

Escritura de archivos

Para la escritura de archivos se utilizan los método write y writelines.
Mientras el primero funciona escribiendo en el archivo una cadena de
texto que toma como pardmetro, el segundo toma como pardmetro una
lista de cadenas de texto indicando las lineas que queremos escribir en

el fichero.

Mover el puntero de lectura/escritura

Hay situaciones en las que nos puede interesar mover el puntero de
lectura/escritura a una posicién determinada del archivo. Por ejemplo
si queremos empezar a escribir en una posicién determinada y no al
final o al principio del archivo.

Para esto se utiliza el método seek que toma como pardmetro un ni-

79

Python para todos

mero positivo o negativo a utilizar como desplazamiento. También es
posible utilizar un segundo pardmetro para indicar desde dénde quere-
mos que se haga el desplazamiento: 0 indicard que el desplazamiento
se refiere al principio del fichero (comportamiento por defecto), 1 se
refiere a la posicién actual, y 2, al final del fichero.

Para determinar la posicién en la que se encuentra actualmente el

puntero se utiliza el método tell(), que devuelve un entero indicando
la distancia en bytes desde el principio del fichero.

80

EXPRESIONE
REGULARE

Las expresiones regulares, también llamadas regex o regexp, consisten
en patrones que describen conjuntos de cadenas de caracteres.

Algo parecido seria escribir en la linea de comandos de Windows

dir *.exe

'*.exe' serfa una “expresion regular” que describiria todas las cadenas
de caracteres que empiezan con cualquier cosa seguida de ‘.exe’, es
decir, todos los archivos exe.

El trabajo con expresiones regulares en Python se realiza mediante el
moédulo re, que data de Python 1.5 y que proporciona una sintaxis para
la creacién de patrones similar a la de Perl. En Python 1.6 el médulo
se reescribi6 para dotarlo de soporte de cadenas unicode y mejorar su
rendimiento.

El médulo re contiene funciones para buscar patrones dentro de una
cadena (search), comprobar si una cadena se ajusta a un determinado
criterio descrito mediante un patrén (match), dividir la cadena usando
las ocurrencias del patrén como puntos de ruptura (split) o para sus-
tituir todas las ocurrencias del patrén por otra cadena (sub). Veremos
estas funciones y alguna mds en la préxima seccién, pero por ahora,
aprendamos algo mds sobre la sintaxis de las expresiones regulares.

Patrones

La expresién regular mds sencilla consiste en una cadena simple, que

81

Python para todos

describe un conjunto compuesto tan solo por esa misma cadena. Por
ejemplo, veamos cémo la cadena "python" coincide con la expresién
regular "python" usando la funcién match:

import re

if re.match("python", "python"):
print "cierto"

Si quisiéramos comprobar si la cadena es "python", "jython",
"cython" o cualquier otra cosa que termine en "ython", podriamos
utilizar el cardcter comodin, el punto '.":

re.match(".ython", "python")
re.match(".ython", "jython")

La expresién regular ".ython" describiria a todas las cadenas que con-
p g y

sistan en un cardcter cualquiera, menos el de nueva linea, seguido de

"ython". Un caricter cualquiera y solo uno. No cero, ni dos, ni tres.

En el caso de que necesitdramos el cardcter '."' en la expresién regular,
o cualquier otro de los caracteres especiales que veremos a continua-
cién, tendriamos que escaparlo utilizando la barra invertida.

Para comprobar si la cadena consiste en 3 caracteres seguidos de un
p
punto, por ejemplo, podriamos utilizar lo siguiente:

re.match("...\.", "abc.")

Si necesitdramos una expresion que sélo resultara cierta para las cade-
nas "python", "jython" y "cython" y ninguna otra, podriamos utilizar
el cardcter ' |' para expresar alternativa escribiendo los tres subpatro-
nes completos:

re.match("pythonljythonlcython", "python")

o bien tan solo la parte que pueda cambiar, encerrada entre paréntesis,
formando lo que se conoce como un grupo. Los grupos tienen una
gran importancia a la hora de trabajar con expresiones regulares y este
no es su Ginico uso, como veremos en la siguiente seccién.

82

Expresiones regulares

re.match("(pljlc)ython", "python")

Otra opcién consistiria en encerrar los caracteres 'p', 'j'y 'c' entre
corchetes para formar una clase de caracteres, indicando que en esa po-
sicién puede colocarse cualquiera de los caracteres de la clase.

re.match("[pjclython", "python")

¢Y si quisiéramos comprobar si la cadena es "python0", "python1",
"python2", ..., "python9"? En lugar de tener que encerrar los 10 digitos
dentro de los corchetes podemos utilizar el guién, que sirve para indi-
car rangos. Por ejemplo a-d indicaria todas las letras minusculas de la
'a'ala 'd'; 0-9 serian todos los niimeros de 0 a 9 inclusive.

re.match("python[0-9]", "python0")

Si quisiéramos, por ejemplo, que el tltimo cardcter fuera o un digito o
una letra simplemente se escribirian dentro de los corchetes todos los
criterios, uno detras de otro.

re.match("python[0-9a-zA-Z]", "pythonp")

Es necesario advertir que dentro de las clases de caracteres los caracte-
res especiales no necesitan ser escapados. Para comprobar si la cadena
es "python." o "python,", entonces, escribiriamos:

re.match("python[.,]1", "python.")

y no

re.match("python[\.,]", "python.")

ya que en este ultimo caso estariamos comprobando si la cadena es

non

"python.", "python," o "python\".

Los conjuntos de caracteres también se pueden negar utilizando el
simbolo 'A'. La expresién "python[A0-9a-z]", por ejemplo, indicaria
que nos interesan las cadenas que comiencen por "python" y tengan
como ultimo cardcter algo que no sea ni una letra mindscula ni un
ndimero.

83

Python para todos

re.match("python[A0-9a-z]", "python+")

El uso de [0-9] para referirse a un digito no es muy comun, ya que, al
ser la comprobacién de que un cardcter es un digito algo muy utilizado,
existe una secuencia especial equivalente: '\d'. Existen otras secuen-
cias disponibles que listamos a continuacién:

* "\d":un digito. Equivale a [0-9]

* "\D": cualquier caricter que no sea un digito. Equivale a [20-9]

* "\w":cualquier caracter alfanumérico. Equivale a [a-zA-Z0-9_]

* "\W":cualquier cardcter no alfanumérico. Equivale a [/a-zA-
Z20-9_]

* "\s":cualquier caricter en blanco. Equivale a [\t\n\r\f\v]

* "\S§":cualquier caricter que no sea un espacio en blanco. Equivale
a [A \t\n\r\f\v]

Veamos ahora cémo representar repeticiones de caracteres, dado que
no seria de mucha utilidad tener que, por ejemplo, escribir una expre-
sién regular con 30 caracteres '\d' para buscar nimeros de 30 digitos.
Para este menester tenemos los caracteres especiales +, * y ?, ademds de
las llaves {}.

El caricter + indica que lo que tenemos a la izquierda, sea un caric-
)
ter como 'a', una clase como '[abc]' o un subpatrén como (abc),
puede encontrarse una o mas veces. Por ejemplo la expresién regular
n n

"python+" describiria las cadenas "python", "pythonn" y "pythonnn",
pero no "pytho", ya que debe haber al menos una n.

El caricter * es similar a +, pero en este caso lo que se sitda a su iz-
quierda puede encontrarse cero o mas veces.

El caricter ? indica opcionalidad, es decir, lo que tenemos a la izquier-
da puede o no aparecer (puede aparecer 0 o 1 veces).

Finalmente las llaves sirven para indicar el nimero de veces exacto que
puede aparecer el cardcter de la izquierda, o bien un rango de veces que
puede aparecer. Por ejemplo {3} indicaria que tiene que aparecer exac-
tamente 3 veces, {3, 8} indicaria que tiene que aparecer de 3 a 8 veces,

84

Expresiones regulares

{,8} de 0 a8 vecesy {3,} tres veces o mas (las que sean).

Otro elemento interesante en las expresiones regulares, para terminar,
es la especificacién de las posiciones en que se tiene que encontrar la
cadena, esa es la utilidad de A y $, que indican, respectivamente, que el
elemento sobre el que actdan debe ir al principio de la cadena o al final
de esta.

La cadena "http://mundogeek.net", por ejemplo, se ajustaria a la
expresion regular "Ahttp", mientras que la cadena "E1 protocolo es
http" no lo haria, ya que el http no se encuentra al principio de la
cadena.

Usando el médulo re

Ya hemos visto por encima cémo se utiliza la funcién match del médu-
lo re para comprobar si una cadena se ajusta a un determinado patrén.
El primer parimetro de la funcién es la expresién regular, el segundo,
la cadena a comprobar y existe un tercer parimetro opcional que con-
tiene distintos flags que se pueden utilizar para modificar el comporta-
miento de las expresiones regulares.

Algunos ejemplos de flags del médulo re son re. IGNORECASE, que hace
que no se tenga en cuenta si las letras son mayusculas o mintsculas o
re.VERBOSE, que hace que se ignoren los espacios y los comentarios en
la cadena que representa la expresion regular.

El valor de retorno de la funcién serd None en caso de que la cadena no
se ajuste al patrén o un objeto de tipo MatchObject en caso contrario.
Este objeto MatchObject cuenta con métodos start y end que devuel-
ven la posicién en la que comienza y finaliza la subcadena reconocida y
métodos group y groups que permiten acceder a los grupos que propi-
ciaron el reconocimiento de la cadena.

Al llamar al método group sin pardmetros se nos devuelve el grupo 0
de la cadena reconocida. El grupo 0 es la subcadena reconocida por
la expresién regular al completo, aunque no existan paréntesis que
delimiten el grupo.

85

Python para todos

>>> mo = re.match("http://.+\net", "http://mundogeek.net")
>>> print mo.group()
http://mundogeek.net

Podriamos crear grupos utilizando los paréntesis, como aprendimos
en la seccién anterior, obteniendo asi la parte de la cadena que nos
interese.

>>> mo = re.match("http://(.+)\net", "http://mundogeek.net")
>>> print mo.group(0)

http://mundogeek.net

>>> print mo.group(1)

mundogeek

El método groups, por su parte, devuelve una lista con todos los gru-
pos, exceptuando el grupo 0, que se omite.

>>> mo = re.match("http://(.+)\(.{3})", "http://mundogeek.
net")

>>> print mo.groups()

('mundogeek', 'net')

La funcién search del médulo re funciona de forma similar a match;
contamos con los mismos pardmetros y el mismo valor de retorno.

La tnica diferencia es que al utilizar match la cadena debe ajustarse al
patrén desde el primer cardcter de la cadena, mientras que con search
buscamos cualquier parte de la cadena que se ajuste al patrén. Por esta
razén el método start de un objeto MatchObject obtenido mediante la
funcién match siempre devolverd 0, mientras que en el caso de search
esto no tiene por qué ser asi.

Otra funcién de bisqueda del médulo re es findall. Este toma los
mismos pardmetros que las dos funciones anteriores, pero devuelve una
lista con las subcadenas que cumplieron el patrén.

Otra posibilidad, si no queremos todas las coincidencias, es utilizar
finditer, que devuelve un iterador con el que consultar uno a uno los
distintos MatchOb ject.

Las expresiones regulares no solo permiten realizar busquedas o
comprobaciones, sino que, como comentamos anteriormente, también

86

Expresiones regulares

tenemos funciones disponibles para dividir la cadena o realizar reem-
plazos.

La funcién split sin ir mas lejos toma como parimetros un patrén,
una cadena y un entero opcional indicando el nimero méximo de
elementos en los que queremos dividir la cadena, y utiliza el patrén a
modo de puntos de separacién para la cadena, devolviendo una lista
con las subcadenas.

La funcién sub toma como parimetros un patrén a sustituir, una
cadena que usar como reemplazo cada vez que encontremos el patrén,
la cadena sobre la que realizar las sustituciones, y un entero opcional
indicando el nimero méximo de sustituciones que queremos realizar.

Al llamar a estos métodos lo que ocurre en realidad es que se crea un
nuevo objeto de tipo RegexObject que representa la expresion regular, y
se llama a métodos de este objeto que tienen los mismos nombres que
las funciones del médulo.

Si vamos a utilizar un mismo patrén varias veces nos puede interesar
crear un objeto de este tipo y llamar a sus métodos nosotros mismos;
de esta forma evitamos que el intérprete tenga que crear un nuevo
objeto cada vez que usemos el patrén y mejoraremos el rendimiento de
la aplicacién.

Para crear un objeto RegexObject se utiliza la funcién compile del
moédulo, al que se le pasa como pardmetro la cadena que representa el
patrén que queremos utilizar para nuestra expresién regular y, opcio-
nalmente, una serie de flags de entre los que comentamos anterior-
mente.

87

SOCKETS

La comunicacién entre distintas entidades en una red se basa en
Python en el cldsico concepto de sockess. Los sockets son un concepto
abstracto con el que se designa al punto final de una conexién.

Los programas utilizan sockets para comunicarse con otros programas
>
que pueden estar situados en computadoras distintas.

Un socket queda definido por la direccién IP de la méaquina, el puerto
en el que escucha, y el protocolo que utiliza.

Los tipos y funciones necesarios para trabajar con sockets se encuen-
tran en Python en el médulo socket, como no podria ser de otra
forma.

Los sockets se clasifican en sockets de flujo (socket.SOCK_STREAM) o
sockets de datagramas (socket.SOCK_DGRAM) dependiendo de si el ser-
vicio utiliza TCP, que es orientado a conexién y fiable, o UDP, respec-
tivamente. En este capitulo sélo cubriremos los sockets de flujo, que
cubren un 90% de las necesidades comunes.

Los sockets también se pueden clasificar segtin la familia. Tenemos
sockets UNIX (socket.AF_UNIX) que se crearon antes de la concepcién
de las redes y se basan en ficheros, sockets socket.AF_INET que son los
que nos interesan, sockets socket.AF_INET6 para IPv6, etc.

Para crear un socket se utiliza el constructor socket.socket() que pue-
de tomar como pardmetros opcionales la familia, el tipo y el protocolo.
Por defecto se utiliza la familia AF_INET y el tipo SOCK_STREAM.

Veremos durante el resto del capitulo cémo crear un par de programas
cliente y servidor a modo de ejemplo.

88

Sockets

Lo primero que tenemos que hacer es crear un objeto socket para el
servidor

socket_s = socket.socket()

Tenemos ahora que indicar en qué puerto se va a mantener a la escu-
cha nuestro servidor utilizando el método bind. Para sockets IP, como
es nuestro caso, el argumento de bind es una tupla que contiene el
host y el puerto. El host se puede dejar vacio, indicando al método que
puede utilizar cualquier nombre que esté disponible.

socket_s.bind(("localhost", 9999))

Por dltimo utilizamos 1isten para hacer que el socket acepte conexio-
nes entrantes y accept para comenzar a escuchar. El método listen
requiere de un pardmetro que indica el nimero de conexiones maximas
que queremos aceptar; evidentemente, este valor debe ser al menos 1.

El método accept se mantiene a la espera de conexiones entrantes,
bloqueando la ejecucién hasta que llega un mensaje.

Cuando llega un mensaje, accept desbloquea la ejecucién, devolviendo
un objeto socket que representa la conexién del cliente y una tupla que
contiene el host y puerto de dicha conexién.

socket_s.listen(10)

socket_c, (host_c, puerto_c) = socket_s.accept()

Una vez que tenemos este objeto socket podemos comunicarnos con
el cliente a través suyo, mediante los métodos recv y send (o recvfrom
y sendfrom en UDP) que permiten recibir o enviar mensajes respec-
tivamente. El método send toma como pardmetros los datos a enviar,
mientras que el método recv toma como parimetro el nimero maxi-
mo de bytes a aceptar.

recibido = socket_c.recv(1024)

print "Recibido: ", recibio
socket_c.send(recibido)

89

Python para todos

Una vez que hemos terminado de trabajar con el socket, lo cerramos
con el método close.

Crear un cliente es atin mds sencillo. Solo tenemos que crear el objeto
socket, utilizar el método connect para conectarnos al servidor y uti-
lizar los métodos send y recv que vimos anteriormente. El argumento
de connect es una tupla con host y puerto, exactamente igual que bind.

socket_c = socket.socket()
socket_c.connect(("localhost", 9999))
socket_c.send("hola")

Veamos por tltimo un ejemplo completo. En este ejemplo el cliente
manda al servidor cualquier mensaje que escriba el usuario y el servi-
dor no hace mas que repetir el mensaje recibido. La ejecucién termina
cuando el usuario escribe quit.

Este seria el cédigo del script servidor:

import socket

s = socket.socket()
s.bind(("localhost", 9999))
s.listen(1)

sc, addr = s.accept()

while True:
recibido = sc.recv(1024)
if recibido == "quit":
break

print "Recibido:", recibido
sc.send(recibido)

print "adios"

sc.close()
s.close()

Y a continuacién tenemos el del script cliente:
view plaincopy to clipboardprint?
import socket

s = socket.socket()
s.connect(("localhost", 9999))

90

Sockets

while True:
mensaje = raw_input("> ")
s.send(mensaje)
mensaje == "quit":
break

print "adios"

s.close()

91

INTERACTUAR CON
WEBS

Existen dos médulos principales para leer datos de URLs en Python:
urllib y urllib2. En esta leccién aprenderemos a utilizar ur11lib2

ya que es mucho mds completo, aunque urllib tiene funcionalidades
propias que no se pueden encontrar en urllib2, por lo que también lo
tocaremos de pasada.

urllib2 puede leer datos de una URL usando varios protocolos como

HTTP, HTTPS, FTP, o Gopher.

Se utiliza una funcién urlopen para crear un objeto parecido a un
fichero con el que leer de la URL. Este objeto cuenta con métodos
como read, readline, readlines y close, los cuales funcionan exac-
tamente igual que en los objetos file, aunque en realidad estamos
trabajando con un wrapper que nos abstrae de un socket que se utiliza

por debajo.

El método read, como recordareis, sirve para leer el “archivo” completo
o el nimero de bytes especificado como pardmetro, readline para leer
una linea, y readlines para leer todas las lineas y devolver una lista con
ellas.

También contamos con un par de métodos geturl, para obtener la
URL de la que estamos leyendo (que puede ser util para comprobar si
ha habido una redireccién) e info que nos devuelve un objeto con las
cabeceras de respuesta del servidor (a las que también se puede acceder
mediante el atributo headers).

import urllib2
92

Interactuar con webs

try:
f = urllib2.urlopen("http://www.python.org")
print f.read()
f.close()

except HTTPError, e:
print "Ocurrié un error
print e.code

except URLError, e:
print "Ocurrié un error
print e.reason

Al trabajar con urllib2 nos podemos encontrar, como vemos, con
errores de tipo URLError. Si trabajamos con HT'TP podemos encon-
trarnos también con errores de la subclase de URLError HTTPError, que
se lanzan cuando el servidor devuelve un cédigo de error HT'TP, como
el error 404 cuando no se encuentra el recurso. También podriamos
encontrarnos con errores lanzados por la libreria que ur1lib2 utiliza
por debajo para las transferencias HT'TP: httplib; o con excepciones
lanzadas por el propio médulo socket.

La funcién urlopen cuenta con un pardmetro opcional data con el que
poder enviar informacién a direcciones HT'TP (y solo HT'TP) usando
POST (los pardmetros se envian en la propia peticién), por ejemplo
para responder a un formulario. Este pardmetro es una cadena codifi-
cada adecuadamente, siguiendo el formato utilizado en las URLs:

'password=contrase%A4a&usuario=manuel’

Lo mas sencillo para codificar la cadena es utilizar el método urlen-
code de urllib, que acepta un diccionario o una lista de tuplas (clave,
valor) y genera la cadena codificada correspondiente:

import urllib, urllib2

params = urllib.urlencode({"usuario": "manuel",
"password": "contrasena"})
f = urllib2.urlopen("http://ejemplo.com/login", params)

Silo unico que queremos hacer es descargar el contenido de una URL
a un archivo local, podemos utilizar la funcién urlretrieve de urllib
en lugar de leer de un objeto creado con urlopen y escribir los datos

93

Python para todos

leidos.

La funcién urlretrieve toma como pardmetros la URL a descar-
gar y, opcionalmente, un parimetro filename con la ruta local en la
que guardar el archivo, un parimetro data similar al de urlopen y un
pardmetro reporthook con una funcién que utilizar para informar del
progreso.

A excepcién de las ocasiones en las que se utiliza el pardmetro data

las conexiones siempre se realizan utilizando GET (los parimetros se
envian en la URL). Para enviar datos usando GET basta con concate-
nar la cadena resultante de urlencode con la URL a la que nos vamos a
conectar mediante el simbolo ?.

params = urllib.urlencode({"usuario": "manuel",
"password": "contrasena"})

f = urllib2.urlopen("http://ejemplo.com/login" +
"?" + params)

En urllib también se utiliza una funcién urlopen para crear nuestros
pseudo-archivos, pero a diferencia de la versién de url11ib, la funcién
urlopen de urllib2 también puede tomar como pardmetro un objeto
Request, en lugar de la URL y los datos a enviar.

La clase Request define objetos que encapsulan toda la informacién
relativa a una peticién. A través de este objeto podemos realizar peti-
ciones mds complejas, afiadiendo nuestras propias cabeceras, como el

User-Agent.

El constructor mis sencillo para el objeto Request no toma mds que
una cadena indicando la URL a la que conectarse, por lo que utilizar
este objeto como pardmetro de urlopen seria equivalente a utilizar una
cadena con la URL directamente.

Sin embargo el constructor de Request también tiene como pardme-
tros opcionales una cadena data para mandar datos por POST y un
diccionario headers con las cabeceras (ademds de un par de campos
origin_req_host y unverifiable, que quedan fuera del propésito del
capitulo por ser de raro uso).

94

Interactuar con webs

Veamos cémo afiadir nuestras propias cabeceras utilizando como
ejemplo la cabecera User-Agent. El User-Agent es una cabecera que
sirve para identificar el navegador y sistema operativo que estamos
utilizando para conectarnos a esa URL. Por defecto ur11ib2 se identi-
fica como “Python-urllib/2.5”; si quisiéramos identificarnos como un
Linux corriendo Konqueror por ejemplo, usariamos un cédigo similar
al siguiente:

ua = "Mozilla/5.0 (compatible; Konqueror/3.5.8; Linux)"
h = {"User-Agent": ua}
r = urllib2.Request("http://www.python.org", headers=h)
f = urllib2.urlopen(r)

print f.read()

Para personalizar la forma en que trabaja ur11ib2 podemos instalar un
grupo de manejadores (handlers) agrupados en un objeto de la clase
OpenerDirector (opener o abridor), que serd el que se utilice a partir de
ese momento al llamar a urlopen.

Para construir un opener se utiliza la funcién build_opener a la que se
le pasa los manejadores que formaran parte del opener. El opener se
encargard de encadenar la ejecucién de los distintos manejadores en el
orden dado. También se puede usar el constructor de OpenerDirector,
y afiadir los manejadores usando su método add_handler.

Para instalar el opener una vez creado se utiliza la funcién ins-
tall_opener, que toma como pardmetro el opener a instalar. También
se podria, si sélo queremos abrir la URL con ese opener una sola vez,
utilizar el método open del opener.

urllib2 cuenta con handlers que se encargan de manejar los esquemas
disponibles (HT TP, HT'TPS, F'TP), manejar la autenticacién, manejar

las redirecciones, etc.

Para afiadir autenticacién tendriamos que instalar un opener que in-
cluyera como manejador HTTPBasicAuthHandler, ProxyBasicAuthHan-
dler,HTTPDigestAuthHandler y/o ProxyDigestAuthHandler.

Para utilizar autenticacién HT TP bdsica, por ejemplo, usariamos

95

Python para todos

HTTPBasicAuthHandler:

aut_h = urllib2.HTTPBasicAuthHandler()
aut_h.add_password("realm", "host", "usuario", "password")

opener = urllib2.build_opener(aut_h)
urllib2.install_opener(opener)

f = urllib2.urlopen("http://www.python.org")

Si quisiéramos especificar un proxy en el cédigo tendriamos que
utilizar un opener que contuviera el manejador ProxyHandler. El
manejador por defecto incluye una instacia de ProxyHandler construi-
do llamando al inicializador sin pardmetros, con lo que se lee la lista
de proxies a utilizar de la variable de entorno adecuada. Sin embargo
también podemos construir un ProxyHandler pasando como parime-
tro al inicializador un diccionario cuyas claves son los protocolos y los
valores, la URL del proxy a utilizar para dicho protocolo.

proxy_h = urllib2.ProxyHandler({"http" : "http://miproxy.
net:123"})

opener = urllib2.build_opener(proxy_h)
urllib2.install_opener(opener)

f = urllib2.urlopen("http://www.python.org")

Para que se guarden las cookies que manda HT TP utilizamos el ma-
nejador HTTPCookieProcessor.

cookie_h = urllib2.HTTPCookieProcessor ()

opener = urllib2.build_opener(cookie_h)
urllib2.install_opener(opener)

f = urllib2.urlopen("http://www.python.org")
Si queremos acceder a estas cookies o poder mandar nuestras propias

cookies, podemos pasarle como pardmetro al inicializador de HTTPCoo-
kieProcessor un objeto de tipo CookieJar del médulo cookielib.

Para leer las cookies mandadas basta crear un objeto iterable a partir
del CookielJar (también podriamos buscar las cabeceras correspondien-
tes, pero este sistema es mds claro y sencillo):

96

Interactuar con webs

import urllib2, cookielib
cookie_j = cookielib.Cookieldar()
cookie_h = urllib2.HTTPCookieProcessor(cookie_j)

opener = urllib2.build_opener(cookie_h)
opener.open("http://www.python.org")

for num, cookie in enumerate(cookie_j):
print num, cookie.name
print cookie.value
print

En el improbable caso de que necesitiramos afiadir una cookie an-
tes de realizar la conexion, en lugar de conectarnos para que el sitio

la mande, podriamos utilizar el método set_cookie de CookieJar, al
que le pasamos un objeto de tipo Cookie. El constructor de Cookie, no
obstante, es bastante complicado.

97

THREADS

¢Qué son los procesos y los
threads?

Las computadoras serian mucho menos utiles si no pudiéramos hacer
mids de una cosa a la vez. Si no pudiéramos, por ejemplo, escuchar
musica en nuestro reproductor de audio favorito mientras leemos un

tutorial de Python en Mundo Geek.

Pero, ;c6mo se conseguia esto en computadoras antiguas con un solo
nicleo / una sola CPU? Lo que ocurria, y lo que ocurre ahora, es que
en realidad no estamos ejecutando varios procesos a la vez (se llama
proceso a un programa en ejecucion), sino que los procesos se van tur-
nando y, dada la velocidad a la que ejecutan las instrucciones, nosotros
tenemos la impresién de que las tareas se ejecutan de forma paralela
como si tuviéramos multitarea real.

Cada vez que un proceso distinto pasa a ejecutarse es necesario reali-
zar lo que se llama un cambio de contexto, durante el cual se salva el
estado del programa que se estaba ejecutando a memoria y se carga el
estado del programa que va a entrar a ejecutarse.

En Python podemos crear nuevos procesos mediante la funcién
os.fork, que ejecuta la llamada al sistema fork, o mediante otras
funciones mds avanzadas como popen2.popen2, de forma que nuestro
programa pueda realizar varias tareas de forma paralela.

Sin embargo el cambio de contexto puede ser relativamente lento, y
los recursos necesarios para mantener el estado demasiados, por lo que
a menudo es mucho mads eficaz utilizar lo que se conoce como #hreads,
hilos de ejecucién, o procesos ligeros.

98

Threads

Los threads son un concepto similar a los procesos: también se trata de
c6digo en ejecucion. Sin embargo los threads se ejecutan dentro de un

proceso, y los threads del proceso comparten recursos entre si, como la

memoria, por ejemplo.

El sistema operativo necesita menos recursos para crear y gestionar los
threads, y al compartir recursos, el cambio de contexto es mds rapido.
Ademis, dado que los threads comparten el mismo espacio de me-
moria global, es sencillo compartir informacién entre ellos: cualquier
variable global que tengamos en nuestro programa es vista por todos
los threads.

El GIL

La ejecucién de los threads en Python estd controlada por el GIL
(Global Interpreter Lock) de forma que sélo un thread puede ejecutar-
se a la vez, independientemente del nimero de procesadores con el que
cuente la mdquina. Esto posibilita que el escribir extensiones en C para
Python sea mucho mas sencillo, pero tiene la desventaja de limitar mu-
cho el rendimiento, por lo que a pesar de todo, en Python, en ocasiones
nos puede interesar mas utilizar procesos que threads, que no sufren de
esta limitacidn.

Cada cierto nimero de instrucciones de bytecode la maquina virtual
para la ejecucién del thread y elige otro de entre los que estaban espe-
rando.

Por defecto el cambio de thread se realiza cada 10 instrucciones de
bytecode, aunque se puede modificar mediante la funcién sys.set-
checkinterval. También se cambia de thread cuando el hilo se pone a
dormir con time.sleep o cuando comienza una operacién de entrada/
salida, las cuales pueden tardar mucho en finalizar, y por lo tanto, de no
realizar el cambio, tendriamos a la CPU demasiado tiempo sin trabajar
esperando a que la operacién de E/S terminara.

Para minimizar un poco el efecto del GIL en el rendimiento de nues-

tra aplicacion es conveniente llamar al intérprete con el flag -0, 1o que

hara que se genere un bytecode optimizado con menos instrucciones, y,
99

Python para todos

por lo tanto, menos cambios de contexto. También podemos plantear-
nos el utilizar procesos en lugar de threads, como ya comentamos, uti-
lizando por ejemplo el médulo processing; escribir el cédigo en el que
el rendimiento sea critico en una extensién en C o utilizar IronPython

o Jython, que carecen de GIL.

Threads en Python

El trabajo con threads se lleva a cabo en Python mediante el médulo
thread. Este médulo es opcional y dependiente de la plataforma, y
puede ser necesario, aunque no es comun, recompilar el intérprete para
afadir el soporte de threads.

Ademis de thread, también contamos con el médulo threading que se
apoya en el primero para proporcionarnos una API de mas alto nivel,
mds completa, y orientada a objetos. El médulo threading se basa
ligeramente en el modelo de threads de Java.

El médulo threading contiene una clase Thread que debemos ex-
tender para crear nuestros propios hilos de ejecucién. El método run
contendra el c6digo que queremos que ejecute el thread. Si queremos
especificar nuestro propio constructor, este debera llamar a threading.
Thread.__init__(self) para inicializar el objeto correctamente.

import threading

class MiThread(threading.Thread):
def __init__(self, num):
threading.Thread.__init__(self)
self.num = num

def run(self):
print "Soy el hilo", self.num

Para que el thread comience a ejecutar su cédigo basta con crear una
instancia de la clase que acabamos de definir y llamar a su método
start. El c6digo del hilo principal y el del que acabamos de crear se
ejecutaran de forma concurrente.

print "Soy el hilo principal"

for i in range(0, 10):

100

Threads

t = MiThread(i)
t.start()
t.join()

El método join se utiliza para que el hilo que ejecuta la llamada se
bloquee hasta que finalice el thread sobre el que se llama. En este caso
se utiliza para que el hilo principal no termine su ejecucién antes que
los hijos, lo cudl podria resultar en algunas plataformas en la termina-
cién de los hijos antes de finalizar su ejecucién. El método join puede
tomar como pardmetro un nimero en coma flotante indicando el
numero maximo de segundos a esperar.

Si se intenta llamar al método start para una instancia que ya se estd
ejecutando, obtendremos una excepcién.

La forma recomendada de crear nuevos hilos de ejecucién consiste en
extender la clase Thread, como hemos visto, aunque también es posible
crear una instancia de Thread directamente, e indicar como parimetros
del constructor una clase ejecutable (una clase con el método espe-
cial __call__) o una funcién a ejecutar, y los argumentos en una tupla
(pardmetro args) o un diccionario (pardmetro kwargs).

import threading

def imprime(num):
print "Soy el hilo", num

print "Soy el hilo principal"

for i in range(0, 10):
t = threading.Thread(target=imprime, args=(i,))
t.start()

emds de los pardmetros target, args y kwargs también podemos
Ademis de los pardmetros target, args y kwargs también pod
pasar al constructor un pardmetro de tipo cadena name con el nom-
bre que queremos que tome el thread (el thread tendrd un nombre
predeterminado aunque no lo especifiquemos); un parimetro de tipo
booleano verbose para indicar al médulo que imprima mensajes sobre
el estado de los threads para la depuracién y un parimetro group, que
por ahora no admite ningtn valor pero que en el futuro se utilizard
para crear grupos de threads y poder trabajar a nivel de grupos.

101

Python para todos

Para comprobar si un thread sigue ejecutindose, se puede utilizar el
método isAlive. También podemos asignar un nombre al hilo y con-
sultar su nombre con los métodos setName y getName, respectivamente.

Mediante la funcién threading.enumerate obtendremos una lista de
los objetos Thread que se estdn ejecutando, incluyendo el hilo principal
(podemos comparar el objeto Thread con la variable main_thread para
comprobar si se trata del hilo principal) y con threading.activeCount
podemos consultar el nimero de threads ejecutindose.

Los objetos Thread también cuentan con un método setDaemon que
toma un valor booleano indicando si se trata de un demonio. La utili-
dad de esto es que si solo quedan threads de tipo demonio ejecutindo-
se, la aplicacién terminard automaticamente, terminando estos threads
de forma segura.

Por dltimo tenemos en el médulo threading una clase Timer que he-
reda de Thread y cuya utilidad es la de ejecutar el cédigo de su método
run después de un periodo de tiempo indicado como pardmetro en

su constructor. También incluye un método cancel mediante el que
cancelar la ejecucién antes de que termine el periodo de espera.

Sincronizacion

Uno de los mayores problemas a los que tenemos que enfrentarnos al
utilizar threads es la necesidad de sincronizar el acceso a ciertos recur-
sos por parte de los threads. Entre los mecanismos de sincronizaciéon
que tenemos disponibles en el médulo threading se encuentran los
locks, locks reentrantes, semaforos, condiciones y eventos.

Los locks, también llamados mutex (de mutual exclusion), cierres

de exclusién mutua, cierres o candados, son objetos con dos estados
posibles: adquirido o libre. Cuando un thread adquiere el candado, los
demis threads que lleguen a ese punto posteriormente y pidan adqui-
rirlo se bloquearan hasta que el thread que lo ha adquirido libere el
candado, momento en el cudl podrd entrar otro thread.

El candado se representa mediante la clase Lock. Para adquirir el

102

Threads

candado se utiliza el método acquire del objeto, al que se le puede
pasar un booleano para indicar si queremos esperar a que se libere
(True) o no (False). Si indicamos que no queremos esperar, el método
devolverd True o False dependiendo de si se adquiri6 o no el candado,
respectivamente. Por defecto, si no se indica nada, el hilo se bloquea
indefinidamente.

Para liberar el candado una vez hemos terminado de ejecutar el bloque
de cédigo en el que pudiera producirse un problema de concurrencia,
se utiliza el método release.

lista = []
lock = threading.Lock()

def anyadir(obj):
lock.acquire()
lista.append(obj)
lock.release()

def obtener():
lock.acquire()
obj = lista.pop()
lock.release()
return obj

La clase RLock funciona de forma similar a Lock, pero en este caso el
candado puede ser adquirido por el mismo thread varias veces, y no
quedard liberado hasta que el thread llame a release tantas veces como
llamé a acquire. Como en Lock, y como en todas las primitivas de sin-
cronizacién que veremos a continuacion, es posible indicar a acquire si
queremos que se bloquee o no.

Los semaforos son otra clase de candados. La clase correspondiente,
Semaphore, también cuenta con métodos acquire y release, pero se di-
ferencia de un Lock normal en que el constructor de Semaphore puede
tomar como pardmetro opcional un entero value indicando el nimero
miximo de threads que pueden acceder a la vez a la seccién de cédigo
critico. Si no se indica nada permite el acceso a un solo thread.

Cuando un thread llama a acquire, la variable que indica el nimero
de threads que pueden adquirir el seméforo disminuye en 1, porque

1083

Python para todos

hemos permitido entrar en la seccién de cédigo critico a un hilo mas.
Cuando un hilo llama a release, la variable aumenta en 1.

No es hasta que esta variable del semiforo es 0, que llamar a acquire

q q
producird un bloqueo en el thread que realizé la peticién, a la espera de
que algun otro thread llame a release para liberar su plaza.

Es importante destacar que el valor inicial de la variable tal como lo
pasamos en el constructor, no es un limite méximo, sino que multiples
llamadas a release pueden hacer que el valor de la variable sea mayor
que su valor original. Si no es esto lo que queremos, podemos utilizar
la clase BoundedSemaphore en cuyo caso, ahora si, se consideraria un
error llamar a release demasiadas veces, y se lanzaria una excepcion de
tipo ValueError de superarse el valor inicial.

Podriamos utilizar los semaforos, por ejemplo, en un pequefio pro-
grama en el que multiples threads descargaran datos de una URL, de
forma que pudieramos limitar el nimero de conexiones a realizar al
sitio web para no bombardear el sitio con cientos de peticiones concu-
rrentes.

semaforo = threading.Semaphore(4)

def descargar(url):
semaforo.acquire()
urllib.urlretrieve(url)
semaforo.release()

Las condiciones (clase Condition) son de utilidad para hacer que los
threads sélo puedan entrar en la seccién critica de darse una cierta
condicién o evento. Para esto utilizan un Lock pasado como pardmetro,
o crean un objeto RLock automaticamente si no se pasa ningun para-
metro al constructor.

Son especialmente adecuadas para el clisico problema de productor-
consumidor. La clase cuenta con métodos acquire y release, que lla-
mardn a los métodos correspondientes del candado asociado. También
tenemos métodos wait, notify y notifyAll.

El método wait debe llamarse después de haber adquirido el candado

104

Threads

con acquire. Este método libera el candado y bloquea al thread hasta
que una llamada a notify o notifyAll en otro thread le indican que se
ha cumplido la condicién por la que esperaba. El thread que informa a
los demis de que se ha producido la condicién, también debe llamar a
acquire antes de llamar a notify o notifyAll.

Al llamar a notify, se informa del evento a un solo thread, y por tanto
se despierta un solo thread. Al llamar a notifyAll se despiertan todos
los threads que esperaban a la condicién.

Tanto el thread que notifica como los que son notificados tienen que
terminar liberando el lock con release.

lista = []
cond = threading.Condition()

def consumir():
cond.acquire()
cond.wait()
obj = lista.pop()
cond.release()
return obj

def producir(obj):
cond.acquire()
lista.append(obj)
cond.notify()
cond.release()

Los eventos, implementados mediante al clase Event, son un wra-
pper por encima de Condition y sirven principalmente para coordinar
threads mediante sefiales que indican que se ha producido un evento.
Los eventos nos abstraen del hecho de que estemos utilizando un Lock
por debajo, por lo que carecen de métodos acquire y release.

El thread que debe esperar el evento llama al método wait y se blo-
quea, opcionalmente pasando como pardmetro un nimero en coma
flotante indicando el nimero méximo de segundos a esperar. Otro
hilo, cuando ocurre el evento, manda la sefial a los threads bloqueados
ala espera de dicho evento utilizando el método set. Los threads que
estaban esperando se desbloquean una vez recibida la sefial. El flag que
determina si se ha producido el evento se puede volver a establecer a
falso usando clear.

105

Python para todos

Como vemos los eventos son muy similares a las condiciones, a excep-
cién de que se desbloquean todos los threads que esperaban el evento y
que no tenemos que llamar a acquire y release.

import threading, time

class MiThread(threading.Thread):
def __init__(self, evento):
threading.Thread.__init__(self)
self.evento = evento

def run(self):
print self.getName(), "esperando al evento"
self.evento.wait()
print self.getName(), "termina la espera"

evento = threading.Event()
t1 = MiThread(evento)
tl.start()

t2 = MiThread(evento)
t2.start()

Esperamos un poco
time.sleep(5)
evento.set()

Por dltimo, un pequeo extra. Si sois usuarios de Java sin duda estaréis
echando en falta una palabra clave syncronized para hacer que sélo
un thread pueda acceder al método sobre el que se utiliza a la vez. Una
construccién comun es el uso de un decorador para implementar esta
funcionalidad usando un Lock. Seria algo asi:

def synchronized(lock):
def dec(f):
def func_dec(*args, **kwargs):
lock.acquire()
try:
return f(*args, **kwargs)
finally:
lock.release()
return func_dec
return dec

class MyThread(threading.Thread):
@synchronized(mi_lock)
def run(self):
print "metodo sincronizado"

106

Threads

Datos globales independientes

Como ya hemos comentado los threads comparten las variables
globales. Sin embargo pueden existir situaciones en las que queramos
utilizar variables globales pero que estas variables se comporten como
si fueran locales a un solo thread. Es decir, que cada uno de los threads
tengan valores distintos independientes, y que los cambios de un deter-
minado thread sobre el valor no se vean reflejados en las copias de los
demads threads.

Para lograr este comportamiento se puede utilizar la clase threading.
local, que crea un almacén de datos locales. Primero debemos crear
una instancia de la clase, o de una subclase, para después almacenar y
obtener los valores a través de parimetros de la clase.

datos_locales = threading.local()
datos_locales.mi_var = "hola"
print datos_locales.mi_var

Fijémonos en el siguiente c6digo, por ejemplo. Para el hilo principal el
objeto local tiene un atributo var, y por lo tanto el print imprime su
valor sin problemas. Sin embargo para el hilo t ese atributo no existe, y
por lo tanto lanza una excepcion.

local = threading.local()

def f():
print local.var

local.var = "hola"

t = threading.Thread(target=f)
print local.var

t.start()

t.join()

Compartir informacion

Para compartir informacién entre los threads de forma sencilla po-
demos utilizar la clase Queue.Queue, que implementa una cola (una
estructura de datos de tipo FIFO) con soporte multihilo. Esta clase
utiliza las primitivas de threading para ahorrarnos tener que sincroni-
zar el acceso a los datos nosotros mismos.

107

Python para todos

El constructor de Queue toma un parimetro opcional indicando el
tamafio maximo de la cola. Si no se indica ningtn valor no hay limite
de tamaiio.

Para afiadir un elemento a la cola se utiliza el método put(item); para
obtener el siguiente elemento, get (). Ambos métodos tienen un pari-
metro booleano opcional block que indica si queremos que se espere
hasta que haya algin elemento en la cola para poder devolverlo o hasta
que la cola deje de estar llena para poder introducirlo.

También existe un pardmetro opcional timeout que indica, en segun-
dos, el tiempo maximo a esperar. Si el timeout acaba sin poder haber
realizado la operacién debido a que la cola estaba llena o vacia, o bien
si block era False, se lanzard una excepcién de tipo Queue.Full o
Queue.Empty, respectivamente.

Con gsize obtenemos el tamafio de la cola y con empty() y full()
podemos comprobar si estd vacia o llena.

g = Queue.Queue()

class MiThread(threading.Thread):
def __init__(self, q):
self.q = q
threading.Thread.__init__(self)

def run(self):
while True:
try:
obj = q.get(False)
except Queue.Empty:
print "Fin"
break
print obj

for i in range(10):
q.put(i)

t = MiThread(q)
t.start()
t.join()

108

	Introducción
	¿Qué es Python?
	¿Por qué Python?
	Instalación de Python
	Herramientas básicas

	Mi primer programa en Python
	Tipos básicos
	Números
	Cadenas
	Booleanos

	Colecciones
	Listas
	Tuplas
	Diccionarios

	Control de flujo
	Sentencias condicionales
	Bucles

	Funciones
	Orientación a Objetos
	Clases y objetos
	Herencia
	Herencia múltiple
	Polimorfismo
	Encapsulación
	Clases de nuevo-estilo
	Métodos especiales

	Revisitando Objetos
	Diccionarios
	Cadenas
	Listas

	Programación funcional
	Funciones de orden superior
	Iteraciones de orden superior sobre listas
	Funciones lambda
	Comprensión de listas
	Generadores
	Decoradores

	Excepciones
	Módulos y Paquetes
	Módulos
	Paquetes

	Entrada/Salida Y Ficheros
	Entrada estándar
	Parámetros de línea de comando
	Salida estándar
	Archivos

	Expresiones Regulares
	Patrones
	Usando el módulo re

	Sockets
	Interactuar con webs
	Threads
	¿Qué son los procesos y los threads?
	El GIL
	Threads en Python
	Sincronización
	Datos globales independientes
	Compartir información

